
Principles of Research Design 

4.1 Desirable Properties of Research Design 

We discussed in chapter 1 how a fundamental step in scientific inquiry 
is to ask, exactly, "What is the question?" Explicit formulation of the 
question is essential, because it determines whai we do in the design of 
the study that is supposed to answer it. This might appear trivial, but much 
experience with student-designed studies shows that insufficient criti- 
cal thought is given to (a) stating the question exactly and (b) designing 
the work explicitly to ans'iver the question. 

Just what is it that we need to do in science? Offhand, one might think 
that -eve will want to compare a "treatment" with an untreated "control" 
and that's all. It turns out that ensuring that the treatment and control 
differ in just the one aspect that tests the question, that the treatment is 
effective and unbiased, that the measurements we collect from treated 
and control units are precise and accurate, and that the results are widely 
applicable, as well as accessible to available methods and tests, is con- 
siderably more demanding. There is no "correct" experimental design or 
statistical analysis; both depend on the question being investigated. Once 
we really know our question, however, we can more effectively look for 
appropriate ways to answer the question. 

Whether we propose to do a sampling survey for comparative studies, 
long-term monitoring, perturbation studies, or manipulative experiments, 
certain characteristics are desirable in the design of a research plan. These 
characteristics include1 

1. good estimation of treatment effects, 
2. good estimation of random variation, 
3 .  absence of bias, 
4. precision and accuracy, 

1. I am tempted to add that the research question should be interesting. Many 
of us focus too narrowly; if we seek the underlying generalities, even when deal- 
ing with local, everyday questions, our work will be more interesting to more 
people, and the consequences of our results will reach farther. This matter of 
interest is important, but I did not add this idea to the list simply because "inter- 
esting" is such a value-laden concept that it seemed too subjective. 
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5. wide range of applicability, and 
6. simplicity in  execution and analysis 

To incorporate these desirable characteristics, a variety of research 
design options are available. The options for design focus on three dif- 
ferent parts of research studies: design of treatments (how the treatments 
relate to each other], design of layout  (how the treatments are assigned 
to experimental units), and design of response (how to assure an appro- 
priate response by the experimental units to the treatments). An excel- 
lent extended discussion of the topics of this chapter is given in  Mead 
(1988). 

4.2 Design of Treatments 

The design of treatments merits more thought than it is often given, be- 
cause the treatments define the way we pose the question and how we 
carry out the test. There are many ways to design treatments; this section 
details only a few key approaches. 

As an  example, I borrow an experiment discussed by Urquhart (1981). 
Water from different localities in  arid regions often differs markedly in  
chemical composition, and unknown differences in  chemical content 
could affect plant responses. The experiment therefore addressed the 
question of whether irrigation using xvater from difierent sources led to 
different growth of plants. Chrysanthemums were selected as the assay 
organism, and water was obtained from 24  different sites and included 
distilled water, tap water, brackish water, and water from sulfur springs. 
The mums were grown in  360 pots in a greenhouse. Pots were placed on 
3 benches, 24 groups of 5 pots each on each bench. Each treatment (water 
source) was allocated at random to a group of 5 pots on each bench, with 
an  additional random assignment for each bench. The experiment could 
be run  with one plant per pot, or more than one. The dependent variable 
to be measured as the response to treatments was height of the plants after 
7 weeks of growth 

Some More Statistical Terms Interaction: differences among levels of one 
factor within levels of another factol-. 

Statisticians, as you have no doubt noticed, use cer- Level of a factor: particular treatment from a 
tain everyday terms (normal, mean, significant, pa- graded set of treatments that make up the 
rameter, and error, amongothers) in specialized ways. factor. 
Befor-e we examine the design of treatments, layout, Main effect; differences alnong levels of 
and response, we should review some other familiar one factor, averaging levels of other 
terms that statisticians use with specialized meaning: factors. 

Experimental unit: element or amount of Population: a well-defined set of itelns about 

experimental material to which a treatment is which we seek inferences. 
applied. Treatmenr: distinctive feature, classification, 

Factor: set of treatments of a single type or manipulation that defines or can be applied 
applied to experimental units. to experiniental units. 
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Unstructured Treatment Designs 

If the 24 water samples were merely a random sample of the different 
kinds of water available for irrigation, we could refer to the experiment 
as having an unstructured random treatment design. If we had been deal- 
ing with comparisons of defined fertilizer formulations on mum growth, 
we would have an unstructured fixed treatment design. The importance 
of the fixed or random status is that, as already noted, these models lead 
to slightly different methods of statistical analysis. Actually, unstructured 
designs are used less often than structured designs, because we more often 
select the treatments wlth more specific purposes. 

Stiuctured Treatment Designs 

Factorial Treatments 

If we thought that the relative concentration of some key chemical in  the 
water was important, we could run an experiment in which we watered 
mums with 4 dilutions of original water samples. To make the experi- 
ment feasible, we would pick 6 out of the 24 sources of water; these treat- 
ments would ~ i e l d  a set of data that would be conveniently shown in  a 
table with 6 rows for the sources, and 4 columns for the dilutions. We 
have already encountered this sort of design in chapter 3 ,  when discuss- 
ing ANOVA. Such an experiment is referred to as having a factorial treat- 
ment design. In this case statisticians call the treatments factors, for ob- 
scure historical reasons. 

These experiments require much effort in  execution (note that we re- 
duced the number of water sources in  our example to make it feasible) 
and in analysis (see Sokal and Rohlf 1995, chap. 12). Factorial treatment 
designs, however, provide the opportunity to closely examine the signifi- 
cance of dose effects of the factors and of interactions among the factors 
manipulated-powerful and desirable features. 

Nested Treatments 

If the 24 water samples were known to come from sites that could be clas- 
sified into, say, 4 regions, then we would have set up a nested or grouped 
random treatment design, in which comparisons among groups would 
test regional differences. These designs have also been referred to as hier- 
archical, to highlight that one variable, water chemistry in  our case, is 
grouped at a different (and lower) level than the other variable, region. 
The effects of waters of different chemistry are compared within each 
region; the effects of waters from different sites are compared, naturally 
enough, by among-site comparisons. 

Nested designs in general are less desirable than the cross-classified 
designs discussed in section 3.1 (table 3.6). One reason for this is that 
interactions between the higher and the nested variable are not separable 
in nested designs. In our water chemistry experiment, for instance, in- 
terpretation is limited in that within each region we can compare water 
chemistry among only those sites that happen to be located in the geo- 



82  Doing Science 

graphical region; this may not be an  entirely satisfactory analysis, because 
it may well be, for example, that hard waters predominaire i n  one region 
but n6t in another. 

Nesting can occur at different levels. The regions might be one level 
of nesting. We could nest at a lower level if w e  needed to know within- 
pot variation. To do this lower level nesting, we  would grow four plants 
i n  each pot, instead of one plant. This design would provide information 
as to how variable is the growth of plants within pots subjected to each 
of the treatments on  each bench. 

In nested treatment designs, the highest level of classification can be 
random or fixed, but  the nested level of classification is  usually random. 
For example, i n  the lower level of nesting, the four plants would be se- 
lected at random before planting. 

Nested designs are usually the result of a shortage of subjects or some 
other limitation on experimental units. For example, suppose we  were 
zookeepers concerned xvith keeping our rare New Guinean cassowaries 
free of lice. We wish to find out whether a topical application of a quick- 
acting, easily degradable pyrethrin insecticide reduces number of lice per 
feather in males, females, and young. We could run  a treatment design 
that assigns a dose of pyrethrin to randomly chosen replicate males, to 
females, and to young birds. Even better would be to employ a factorial 
design, i n  which we add levels of dose as the factor. Both these designs 
require the availability of numerous cassowaries. 

It is far more likely, since cassowaries are rare, that our zoo has only a 
pair and its single young. This shortage may force the choice of nested treat- 
ments. We apply a dose of pyrethrins topically to one area on each bird and 
use another area of the same bird as the control: the py re th in  and control 
treatments are nested within a bird. If we select feathers randomly within 
each area before we count lice per feather, the nested treatments are random. 

It may not always be evident whether w e  have a cross-classified or a 

nested treatment design. To help clarify the notion, we  can lay out the 
cassowaryllice experiment as a cross-classified design (fig. 4.1, top) and 
as a nested design (bottom). In the cross-classified design it is clear that 
a common set of treatments (pyrethrins, P, and controls, C )  are applied 
to k replicates (birds) of three types of cassowary (male, female, and ju- 
venile). In the nested version, we have kreplicates of the three cassowary 
types, and we apply the pyrethrins and control treatment to each bird. 
Because the birds may differ i n  ways that we are not aware of, the treat- 
ments (pyrethrin and control) are particular (nested) to each bird. In ac- 
tuality, inost nested design comes about because we lack replicates. and 
only one experimental unit  might be available. 

Some of the drawbacks of nested designs emerge in figure 4.1. We 
are unable to evaluate a possible interaction between the insecticide 
treatment and sex or age of cassowaries, because interactions between 
xrariables can be  quantified only in cross-classified treatments. In the 
nested treatments, we compare the difference between the two treat- 
ments within each bird only, rather than  among a random sample of 
cassowaries. We might also be  concerned that there is  a correlation 
between treatments, either because the lice i n  the control area are af- 
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CROSS CLASSIFIED: 
Variable A (tvwes of subiect) 

Variable B Females Males Juveniles 

Control (c) 1x217 I . . {  x 6 k  1 [ X221 I . . .k)( i ik l  1 x 2 3 1  / . - - I  Xuk  1 

NESTED: 
Variable A 

Females Males Juveniles 

far. 6 4 'ar- Fig. 4.1 Illustration of 1 a cross-classified (top) 
and a nested [bottom) 
design for the cas- 
sowaryllice experi- 

k ment. 

fected by the pyrethrins in  the treated area, or because the host bird 
influences both nested treatments unduly (what if this one bird is inor- 
dinately fond of dust baths?). 

Gradient Treatments 

If we knew that the water samples in our chrysanthemum experiment 
differed in concentration of a known substance (salt, nitrate, molybde- 
num, etc.), the responses of the plants could be related to that specific 
characteristic. The design of an experiment to assess the response of the 
experimental units to a gradient of a treatment variable is called a gradi- 
ent (or regression) treatment design. The resulting data would be analyzed 
by regressions of the appropriate model. 

This kind of design could be used more often than it is, particularly if 
we deal with comparative research approaches rather than strictly ma- 
nipulative approaches. For example, we might be interested in how much 
the nitrogen that enters estuaries affects the concentration of ch1orol;hyll 
in  estuarine water. Since enriching estuaries by experimentally adding 
nitrogen is impractical, and in some places illegal, we might have to con- 
tent ourselves with comparing chlorophyll concentrations in  a series of 
estuaries subject to different rates of nitrogen enrichment. We cannot 
really fix the rate of nitrogen supply to the experimental units (the estu- 
aries). We can, however, select a range of estuaries with a range of nitro- 
gen loading rates and use this as the gradient treatment whose effect on 
the dependent variable is assessed by regression analysis. 
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4.3 Design of Layout 

There are myriad ways to lay out studies, that is, to apply treatments to 
experimental units. This topic has received much attention and is often 
referred to as experimental design. Here I take the liberty of calling this 
layout design, because experimental design more appropriately might 
refer to all three components of research design (treatments, layout, and 
response). 

Principles of Layout Design 

To try to make some sense of the bewildering diversity of designs, we 
will first focus on a few principles underlying layout design, including 
randomization, replication, and stratification. Balancing, confounding, 
and splitting of plots are other basic, more complicated, but perhaps less 
important principles (at least in  my experience), so I leave it to the inter- 
ested reader to find out about these additional principles in the additional 
readings at the end of the chapter. All these principles of layout design 
deal with how we might assign treatments to experimental units so as to 
assess the influence of the treatments on dependent variables. Once we 
have learned something about the principles, we will briefly examine a 
few selected designs in the folloxving section to see how the principles 
are applied. 

In this section we will use terms and ideas already broached in  our 
discussion of statistical analysis in  chapter 3 .  There we reviewed the 
methods of analyzing data; here we go over options for layouts that 
would produce data amenable to the kinds of analyses described in  
chapter 3. 

Randomization 

Randomization is the assignment of treatments to experimental units so 
as to reduce bias. It is designed to control (reduce or eliminate) for any sort 
of bias. Suppose that we plan to do an experiment to assess the effect of 
fertilization with 0,5, or 10 mg nitrogen per week on growth of lettuce plants 
in a greenhouse during winter. If the heat source is at one end of the green- 
house, we might suspect that there could be a bias; that is, plants grown 
nearer the heater will do better. If we place the plants that receive one or 
another nitrogen dose at either end of the greenhouse, the bias provided 
by the heat might confuse our results. Actually, such gradients might exist 
in any experiment, and many of the biases surely present will be unknown 
to us. Therefore, it is always a good precaution to assign the treatments to 
experimental units at random, hence nullifying as much as possible any 
biases that might be present. The fundamental objective of randomization 
is to ensure that each treatment is equally likely to be assigned to any given 
experimental unit. In our experiment, this means that each fertilization 
treatment applied to lettuce plants is equally likely to be located in any 
position along the axis of the greenhouse. 

Randomization can be achieved by use of random number tables avail- 
able in most statistical textbooks or random numbers produced by many 
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computers. If neither of these is available, most of us grizzled experimen- 
talists have at one time or another appealed to a certain time-tested ploy, 
using the last digits of phone numbers in  telephone directories. In rela- 
tively simple experiments, we can randomize fairly readily. If we wanted 
to grow 9 lettuce plants in a row oriented along the axis of the greenhouse, 
we would number each of the pots, up to 9. We then could use the series 
of random numbers, which could be 

We would then allocate each of our three treatments (call them doses I, 
2, 3)  to pots. For example, treatment dose 1 would be applied to pot po- 
sition 5, dose 2 to position 2,  dose 3 to position 9. We would continue 
with dose 1 applied to position 6 (since position 5 was already occupied), 
and so on, until we had completed the number of pots to be given each 
treatment. 

It should be evident that if the experimental design is more compli- 
cated, the randomization may become more elaborate. For example, if 
we want to grow the lettuce plants in several parallel rows, w e  need to 
randomize position assignment within each row. 

Replication 

Replication2 is the assigning of more than one experimental unit to a treat- 
ment combination (in the case of a manipulative experiment) or classifi- 
cation (in the case of comparisons). Replication has several functions. First 
and foremost, replication provides a way to control for random variation- 
recall from chapter 1 that a hallmark of empirical science is the principle 
of controlled observations. Replication makes possible the isolation of 
effects of treatments by controlling for variation caused by chance effects. 
Replication is the only way we can measure within-group variation of 
the dependent variable we are studying. Replication allows us to obtain 
a more representative measure of the population we wish to make infer- 
ences about, since the larger the sample, the more likely we are to get an 
estimate of the p ~ p u l a t i o n . ~  It also generally improves the precision of 
estimates of the variable being studied. 

Although at first thought replication appears to be a simple notion, 
it is a matter of considerable subtlety. There are different ways to ob- 
tain multiple samples, including e2xternal replication, internal replica- 
tion, subsampling, and repeated measures (fig. 4 .2) .  Each of these has 
different properties and applications; immediately below we examine 
the procedures and properties of alternative ways to obtain multiple 
samples. 

2 .  The term replication has been used in other ways in experimentation. Some 
use it to describe the initial similarity of experimental units; others, to say that a 
response by the dependent variable can be reliably repeated after repeated appli- 
cation of the treatment These are unfortunate and confusing uses that should be 
discouraged. 

3. This generalization may not be true if, as we increase n,  we begin-to in- 
clude values for some other, different population. Larger n is hence not always 
desirable. 
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External replication 

Internal replication 

Fig. 4.2 Different Subsampling 
ways to obtain 
multiple measure- 
ments. "r" refer to the 
specific replicate, "t" 
refers to measure- 
lncnts done at 
different times. Repeated Measures E l  

External Replication Suppose we are interested in measuring the nitrate 
content of water in a lake. We know that there is bound to be some vari- 
ability in nitrate content of water over the lake, so we plan to take more 
than one sample; that is, we want replicate samples,  so that we might 
then calculate a mean value that represents the whole lake. 

We could obtain a sample of water at a given time (t,; see fig. 4.2, top), 
and then measure its nitrate content. To get more than one sample, we could 
return at times t ,  and t, and collect more water in which to measure ni- 
trate. We thus have three samples of nitrate from the lake. These are in- 
deed replicates, but the variation that they would include reflects not only 
the variation of nitrate over the lake, but also the variation that could have 
occurred over the time interval ( t ,  to t,) through which they were collected. 
This mefhod of obtaining replication, called eAuternal replication, confounds 
the contribution to variation due to time with the variation that is the sub- 
ject of the study. If variation through time can be assumed to be modest, 
this procedure works well. There may be circumstances where it is neces- 
sary, for logistic or other reasons, to use external replicates. 

Internal Replication A better way to obtain replicates is to collect inde- 
pendent samples as contemporaneously as possible (fig. 4.2, second row). 
This procedure, called internal replication, provides samples that cap- 
ture the variation of interest, without confounding the results with the 
potential effects of passage of time. 
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Clearly, these internal and external replications are extremes in a con- 
tinuum; it is the rare study in which replicetes are taken synchronously, 
and there is always some spatial separation to taking samples or treating 
experimental units alike. Decisions as to type of replication depend on 
whether the effects of time are likely to be important relative to the varia- 
tion to be measured. Much depends on the system and its variation. For 
example, it may very well be that in a large lake, with one vessel avail- 
able, it may take days to sample widely spaced stations, and time becomes 
a potentially more important factor to worry about; over the course of 
days, winds may change or a storm may alter nutrient content of the water. 
Alternatively, if samples taken only some meters apart are as variable as 
those taken many kilometers apart, then the sampling can be nearly con- 
temporaneous. Logistics of sampling, spatial and temporal scales of the 
measurements, and inherent variability of the system studied therefore 
affect how we can carry out replication in any study. 

Subsampling If at any given time we went to a site within our lake and 
collected a large carboy of water, brought it to the laboratory, subdivided 
the contents into aliquots, and performed nitrate measurements on each 
aliquot, we would also have multiple samples. These are subsamples, 
however, replicates not of the variation in  the lake but of the water that 
was collected in the carboy (and probably made more homogeneous yet 
by mixing in the carboy). In general, variability among subsamples is 
smaller, naturally enough, than variability among replicates. 

The relative homogeneity of subsamples may be useful if, for example, 
we want to assess the variability of our analytical procedure to measure 
nitrate (or any other variable). For that purpose we expressly ~ v a n t  to start 
with samples of water that are as similar as possible, and see what varia- 
tion is introduced by the analytical procedure by itself. 

Hurlbert (1984) argued that it is importznt not to confuse true replica- 
tion with subsampling or repeated measurements. A survey of published 
papers in  environmental science showed that 26% of the studies com- 
mitted "pseudoreplication," that is, used subsamples from an experimen- 
tal unit to calculate the random error term with which to compare the 
treatment effects. That may sound too abstract; let us examine an example. 

Suppose we have a comparative study in  which we are trying to de- 
termine whether maple leaves decompose more rapidly when lying on 
sediments at a depth of 1 nl compared to a depth of 10 m. Say we are in  
a hurry and place all of 8 bags of leaves at one site at 1 m, and 8 more at 
another site where the depth is 10  m. We come back 1 month later, har- 
vest the bags, weigh the leaf material left, calculate the variation from 
the 8 bags, and do a statistical analysis, in this case, a one-way .+NOVA with 
n = 8. If the F test shows that the differences between sites relative to 
within bags are significantly high, we can correctly infer that the decay 
rates between the two sites differ. If, on the other hand, we conclude that 
the results show that there are significant differences betrveen the 1 m 
and 10 n7 depths, not only are we committing pseudoreplication, but we 
are also wrong. Since the bags were not randomly allotted to sites at each 
of the depths, we have no wa17 to examine whether the differences in decay 
are related to depth or if similar differences could have been obtained at 
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any two stations, regardless of depth. In this example, the bags are more 
like subsamples than true replicates; differences among the bags measure 
the variability within a small site. 

Pseudoreplication occurs if we push data into inappropriate statisti- 
cal tests. It is not a problem in the science itself. In the example of the 
preceding paragraph, if we were content to make conclusions simply 
about the specific depths or stations, rather than about sites and depths 
in general, there is no problem of pseudoreplication. 

Repeated Measurements A special case of multiple measurements that 
is common in animal research is when measurements are repeatedly done 
on the same experimental unit over the course of time. The variation 
captured by series of such measurements reflects effects of time (as in 
external replication), plus the effect of repeated or prolonged exposure 
of the experimental unit to the treatment. Unless the experimenter can 
be assured that there are no such cumulative effects (a most difficult task), 
repeated measures are not a good way to achieve replication. Repeated 
measures are more suited to detect cumulative effects of treatments on 
processes such as learning, memory, or tolerance. 

In the case of our water sample, for example, repeated measurements 
could be used to estimate the time during which the sample still remains 
a good estimate of field conditions. Such data could also be used to as- 
sess rate of loss of nitrate to microbial action in the sample bottle, under 
whatever conditions the bottle was held. 

In the experiment designed to find relief for our lousy cassowaries, 
we might want to see if there is indeed a progressive reduction of lice 
per bird as a result of the insecticide treatment. We could repeat the 
measurements of lice per feather in both areas of the three birds, perhaps 
once a week for several weeks. This sampling would address the issue of 
cumulative effects following treatment. This sampling would also answer 
the question of whether the insecticide reduced lice in the control area 
as well as in the treated area. You might note that this is not exactly a 
repeated measure design, since at the different times we could collect and 
count lice on a different set of feathers. This just shows that sometimes 
designs are hard to classify into simple categories. 

Similarly, although we have discussed different categories for obtain- 
ing multiple measurements, in reality these categories are less clear cut 
than they might appear, and often create much confmsion. For example, 
it should be evident that there is a continuum between internal and ex- 
ternal replicalion, depending on the temporal and spatial scales of the 
samples and system under study. There is also a continuum between 
external replicates and repeated measures, since, for example, we might 
repeatedly sample vegetation biomass in a parcel subject to a fertiliza- 
tion treatment. If we measure vegetation cover in  a nondestructive fash- 
ion, we are obtaining data similar to that of a behaviorist recording activ- 
ity of one animal subject to a given treatment. The issue here is not to be 
too concerned with types of replicates, but rather to decide what is the 
most appropriate way to assess variation within a set of experimental units 
treated alike, for whatever scientific question being asked. 
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How Many Replicates? 

The preceding paragraphs address the issues of replication as a way to, 
first, estimate random variation and, second, obtain representative esti- 
mates of variables we wish to study. A third function of replication is to 
control variation. Replication can increase .the precision of estimates of 
means, for example. This becomes evident when we consider the vari- 
ance of a mean, sy2 = s2/n: our estimates of variation are proportional to 
l / n ,  where n is the number of replicates. As it turns out, however, this is 
an oversimplification, since variances do not in reality decrease indefi- 
nitely. As n increases, we are necessarily sampling larger and larger pro- 
portions of values in perhaps different populations, and there is usually 
increased heterogeneity as n increases, which may result in larger vari- 
ances. We discussed this topic in section 2 .6 ,  addressing tests of hypoth- 
eses. So, the question is, how many replicates are necessary and suffi- 
cient? There is, in fact, a large subfield of statistics that addresses the 
choice of sample size. 

One quick way to roughly ascertain if the level of replication in  a 
study might be suitable is to plot a graph of variance versus n. If we 
already have some measurements, the variance may be calculated by 
picking (at random from among the n replicates) 2, 3, 4, . . . , n values 
and calculating s. We then plot this versus n. A reasonable sample size 
for further study is that n beyond which the variance seems to become 
relatively stable as n increases. Unfortunately, such graphs more often 
than not are done after the study is completed, when there is no chance 
to modify the design. More sophisticated versions of the sZ/n approach 
are the basis for procedures given in statistical texts for determining 
sample size. The values of n required by statistical analyses of sample 
size are aImost invariably higher than most researchers can expect to 
obtain. This is muck like the well-known example that by the principles 
of aerodynamics, bumblebees cannot possibly fly. Bumblebees none- 
theless fly-and researchers go on advancing science, even though the 
replicate numbers they use should not in theory enable them to evalu- 
ate their results. 

It has been my experience that, at least in environmental sciences, 
number of replicates is, in the end, restricted by practical considerations 
of logistics and available resources. We often find ourselves choosing 
sample sizes as large as possible given the situation, and the number 
is usually fewer than might be desirable based on calculations of sam- 
ple size. In actuality, in  most fields the numbers of replicates are rela- 
tively low, and the adequacy of sample size largely goes unevaluated. 
Kareiva and Anclersen (1988) found that 45% of ecological studies used 
replication of no more than 2. They also found that up to 20 replicates 
seemed feasible if plots were of smaller size, but replication was invari- 
ably less than 5 if the experiment involved plots larger than one meter 
in diameter. 

Some important pieces of research, however, have been unreplicated 
manipulations. The experiment that motivated Sir R. A. Fisher to develop 
much of statistics, the celebrated Rothamsted fertilizer trials (see chap- 
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ter frontispiece), was us~replicated.~ Many key experiments that gave rise 
to new directions in  environmental science were also unreplicated. Lack 
of replication did not prevent the Ilubbard Brook whole-watershed de- 
forestation experiment (Bormann and Likens 19791, the Canadian Experi- 
mental Lakes Area whole-lake fertilization experinlents (Schindler 1987), 
or IRONEX, the km2-scale iron enrichment in  the Pacific Ocean (Martin 
et al. 1994) from making major contributions to environmental science 
(Carpenter et al. 1995). In these studies the effects of the manipulations 
were sufficiently clear that there was little doubt as to the effects of the 
treatment, and statistical analysis was not required. Unreplicated stud- 
ies cannot, therefore, be disregarded; we merely need to make sure that 
we choose our treatments, layout, and response well enough that if the 
effect is there, it will be evident. In addition, newer statistical approaches 
promise better ways to scrutinize results of unreplicated studies (Matson 
and Carpenter 1990). 

As discussed in chapter 3 ,  it is good to be wary of studies with very 
large numbers of samples or replicates. Statistical comparisons based on 
large numbers of observations might turn out to yield statistically signifi- 
cant differences (because so many degrees of freedom are involved), even 
though the actual differences found are so tiny that under practical cir- 
cumstances the differences might be undetectable or unimportant (e.g., 
see fig. 10.2, bottom). 

It is also good to be wary of studies involving very few samples. Com- 
parisons based on a few observations lack power, as discussed in chapter 
2 .  Large and important differences might not be declared "significant" if 
replicates are few. Of course, a larger number of replicates might be unfea- 
sible, in which case the researcher has to sharpen the experimental design 
as much as possible, applying design principles that are described next. 

Stratification 

Replicate experimental units, or sampling sites, have to be laid out or 
located over space. Inevitably, there xvill be differences in many variables 
from one site to another. The effects of all these differences will be re- 
flected in the variability of the measurements taken from the replicate 
units, and since we aim to compare treatment variation with variation 
associated with random error, it is desirable to minimize the variation 
attributable to random variation. We might be able to reduce the unde- 
sirable random variability if we could isolate the contribution to varia- 
tion attributable to gradients in other variables that might or might not 
be of interest but are known to vary in our area of study. Once we can 
remove the effect of the known variables, we have a better estimate of 
random variation and can better compare the effects of the treatment, the 
independent variable that is of interest in the experiment, relative to ran- 
dom variation. 

4. Even the most capable can err-Hurlbert (1984) points out that Fisher him- 
self committed pseudoreplication in  a first analysis of data from a manure ex- 
periment with potatoes. Fisher subsequently omitted the offending data, but never 
acknowledged the slip. 
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/ Controls 
I 

I have hardly mentioned this essential part of ex- 
perimentation since chapter 1 .  Now we have some 
more conceptj and terminology that allow us to 
make a few more distinctions. The term controls 
is used in a variety of ways in relation to experi- 
mentation: 

Control treatments allow evaluation of 
manipulative treatments, by controlling for 
proced~ure effects and temporal changes. 
Replication and randomization control for 
random effects and bias. 
Interspersion of treatments controls for 
regular spatial variation among experimental 
units. 

Regulation of the physical environment or 
experimental material (by the experi- 
menter) confers better control on the 
experiment. 

It would be preferable to reserve the term controls 
for only the first type of use, the one most meaning- 
ful for statistical tests. The second and third mean- 
ings are only extensions of the first, to help us under- 
stand the functions of replication, randomization, and 
stratification. The last meaning has the least to rec- 
ommend it. It may derive from the maxim "hold 
constant all variables but the one of interest" but is 
unfortunate because in a true experiment the ad- 
equacy of a control treatment is not necessarily re- 
lated to the degree to which the researcher restricts 
the conditions under which the experiment is run. 

To isolate the effects of the "nuisance" variables we lay out "blocks" 
or "strata" (hence stratification), within which these variables are more 
or less constant. In such stratified designs, if xve have j blocks or strata, 
we can therefore remove a Lerrn /3; from E ; ~  the term describing random 
variation: 

Y,; = p + a, + p; + E;; 

We discuss stratified experimental designs further below 

Basic Experimental Layouts 

While there may be as many layout designs as experiments, there are a 
few essential layouts that  illustrate the filnclamental principles. 

Randomized Layouts 

The simplest way to lay out  an experiment (i.e., to assign treatments to 
experimental units) is to randomize. The top two layouts in figure 4.3 
show randomized layouts i n  a case where we have a linear or a square 
formation of experimental units. The experimental units could be rows 
of plots i n  a field, ponds,  aquaria on a laboratory bench, and so on. Two 
treatments (shown by black and white boxes) are assigned at random to 
the 8 or 1 2  experimental units. 

In experiments i n  which the number of replicates is small (fewer than 
4-6), a randomized layout may segregate replicates subjected to one treat- 
ment from those given the other treatment (top row, fig. 4.4) leading to 
possible biases. With just three replicates, for example, there is 10% chance 
that the first t h e e  replicates will receive one of the treatments. Thus, a com- 
pletely randomized layout might not always provide the best layout de- 
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Completely 
randomized: 

Fig. 4 . 3  Layout of 
experimental units in 
rows (left) or in 
squares (right], for 
completely random- 
ized, randomized 
block, and systematic 
layout designs. 

Fig. 4.4 Less desir- 
able layouts. The e 

refers to emplace- 
ments that hold 
groups of experimen- 
tal units. 

Randomized 
block: 

Systematic 
layouts: 

sign. Completely randomized layouts such as that shown on the top right 
of figure 4.3 are less subject to the problem of segregated treatments. 

The data from layouts such as the linear arrangement (fig. 4.3, top left) 
and the square (middle right) are good candidates for analysis by a one- 
way KNOVA or equivalent nonparametric tests. 

Randomized Blocks 

We can lag out experimental units by restricting randomization in  one 
direction; this is called blocking by statisticians (fig. 4.3, middle). We 
discussed this concept above as stratification. In the linear arrangement 
of units (middle left), we can set up  blocks b,, b,, b,, and b, and assign 
treatments randomly within each block (hence the name of this layout). 
Similarly, we can set up  blocks in  the square formation (middle right) 
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and assign treatments randomly withi11 blocks. Blocking reduces the 
possibility of chance segregation of treatments, in addition to preventing 
preexisting gradients and nondemonic intrusions from obscuring real 
treatment effects or prompting spurious ones. 

The data resulting from a layout such as that of the middle left panel 
of figure 4.3 can be analyzed by a paired t test, a one-way unreplicated 
ANOVA, or equivalent nonparametric methods. The square arrangement of 
the middle right panel would yield data amenable to a two-way repli- 
cated ANOVA. 

Systematic Layouts 

Another way to restrict randomization in linear layouts is to intersperse 
or alternate the treatments systematically (fig. 4.3, bottom left). This is 
acceptable in many situations and might be better than a completely ran- 
domized layout, because this layout prevents segregation in linear ar- 
rangements of experimental units. Data from a systematic linear layout 
would be analyzed by unpaired t test or nonparametric tests. 

One special case of systematic restriction of randomization in which 
the stratification is done i n  two directions (rows and columns) is called 
a Latin square (fig. 4.3, bottom right). Latin squares are useful for a va- 
riety of situations. They have been especially valuable in agricultural 
work. For instance, if fertilizer trials are done on a sloping field in  which 
there is a strong prevailing wind perpendicular to the slope, a Latin 
square design offers the chance to stratify experimental units in the two 
directions and hence improve estimation of the fertilizer effect. Another 
situation in which Latin squares are appropriate is for tests under vari- 
ous classifications. One example is wear in automobile tires of differ- 
ent brands. If we are testing four brands of tires, we put one of each brand 
in each wheel position. We have to have four cars (or kinds of vehicles) 
to use in the test. We assign tire brands to each vehicle such that all 
brands appear in  all four wheel positions. This layout allows us to ex- 
amine performance of all four tire brands in each vehicle in  each wheel 
position. 

Latin square layouts are analyzed with a three-way ANOVA, in  which 
rows, columns, and crops are the three components of the variation: 

Latin but Not Creek Squares 

In 1782 the Swiss mathematician Leonhard Euler 
gave a lecture to the Zeeland Scientific Society of 
Holland, in which he posed the following problem. 
The Emperor was coming to visit a certain garri- 
son town. In the town there were six regimen&, 
with six ranks of officers. It occurred to the garri- 
son commander to choose 36 officers and arrange 
them in a square formation, so that the Emperor 

could inspect one of each of the six ranks of offi- 
cers, and one officer from each regiment, from any 
side of the arrangernent. Euler assigned Latin letters 
(as he called them) to the ranks of officers and Creek 
letters to the regiments. He solved the Latin square 
and showed that the Creek square could not be 
solved simultaneously. Euler was correct, although 
his proof was flawed, but in any case he gave the 
name to the experimental layout: Latin squares. 

Adapted from Pearce (7965). 
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where r and c stand for rows and columns and t is the treatment effect. 
The bracketed ij shows that the kth observation is only one within each 
roxv and co lun~n .  Latin square layouts are useful but restrictive: the num- 
ber of replicates must  be equal to the number of treatments, and to ob- 
tain replicates we  need to run  more than one square. Mead (1988) pro- 
vides details of the analysis. 

4.4 Response Design 

In any experiment or sampling, many kinds of responses by the experi- 
mental or sampling unit could be recorded. If we were testing the suc- 
cess of an  antibiotic, we could record presence or absence of colonies of 
the bacterium in  the agar i n  petri dishes to which the antibiotic and bac- 
teria were added. We could also count the number of colonies per petri 
dish. We could also measure the area of petri dish covered by colonies. 
All these would in  a way assess the action of the antibiotic. 

The first question to ask about a response measurement is  whether it 
relevantly answers the question posed in  the experiment. Is presence or 
absence a sufficient response? Do we want a quantitative response? If we 
were testing different doses we  might, but we  could also be interested in 
a presence or absence response at various doses, to identify the thresh- 
old of action of the antibiotic. Are the responses meaningful i n  terms of 
the question? For example, area of colony might be just a response by a 
few resistant cells that grew rapidly after the antibiotic eliminated other 
cells; if so, area is not the best response to use to evaluate effectiveness 
of the antibiotic. 

The data resulting from the different measurements would differ in 
the kind of analysis to be used. The presence and absence measurements 

Some Undesirable Experimental Layouts 

We have already noted that layouts such as those 
of figure 4.4 are iindesirable. The obvious reason 
is that effects of position of the units might be con- 
founded with treatment effects. But there are more 
subtle features to notice. At times the units at-e 
placed on different fields, ponds, receptacles, 
aquaria, and so on. This may be necessary, for 
example, if we are doing studies of responses of 
different bacterial clones to pressure and we can 
afford only two hyperbar-ic chambers. When pos- 
sible, this is to be avoided, because our replicates 
become subsamples by this layout. 

At other times we might apply treatments to 
units but in a way that links the units (fig. 4.4, bot- 
tom left). If we are adding two kinds of substrates 

in a test to see which increases yield of a fungal 
antibiotic, we might have a source for each of the 
substrates. This might be inevitable, but this deliv- 
ery to the layout makes the units less independent 
of each other. We need to watch out for other links 
among the units in O U I -  layout (fig. 4.4, bottom 
right). If we are testing two different diets for cul- 
tivation ot mussels and we have only one seawater 
source, we might set up seawater connections as 
shown in the upper case in the bottom right panel. 
That physical link could make the treatmenb lei5 

distinct and deprive the units of independence. 
The worst situation is one I saw during a visit to an 
aquaculture facility. In that instance, not only was 
there a link from one unit to the next by flowing 
seawater, but one treatment was upstream of the 
other (bottom case in the bottom right panel). 
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would give discrete responses, binomially distributed data, or Poisson- 
distributed data; all would be analyzed by a nonparametric method. The 
binomially distributed data would yield counts that are initially discrete 
but that could be averaged if the experiment had replicates, yielding a 
continuous response. The continuous data would be analyzable using 
ANOVA, perhaps after some transformation because of the origin of the data 
as counts. The Poisson-distributed data would give continuous measure- 
ment data amenable to ANOVA analysis. 

It is often the case that we measure a response not from the experi- 
mental unit but from what Urquhart (1981) calls the evaluation unit.  For 
example, we may use a sample of blood from a toucan of a given species 
to assess its genetic similarity to another species. We might measure the 
diameter of a sample of a few eggs from a female trout to evaluate whether 
diet given to the trout affected reproduction. We take measurements from 
evaluation units, but we want to make inferences about experimental 
units. We need to make sure, therefore, that the evaluation units aptly 
represent the experimental units. 

In some cases, we might want to make repeated evaluations of the 
response of the evaluation unit. When measuring the length of a wig- 
gling fish, perhaps more than one measurement might be warranted; we 
might want to do several repetitions of a titration, just to make sure that 
no demonic intrusions affect our measurements. In a way, we discussed 
this above with the issue of subsampling. As in  that case, these repeti- 
tions are used only to improve our measurement, rather than to increase 
significance of tests. 

4.5 Sensible Experimental Design 

I have emphasized concepts in  chapters 1-3 because too many of us sim- 
ply go to a statistics book and find a design and analysis that seem to fit 
our data. We then make the data fit that Procrustean bed,5 often inappro- 
priately, and rush on to comment on the results. Designing research and 
analyzing results will be better with some consultation with a knowledge- 
able person. 

The first question that will be asked by a statistician is, "What is the 
question being asked?" I cannot overemphasize the importance of keep- 
ing-at all times-firmly in  mind the specific question or questions we 
wish to answer. All else in design and analysis in science stems from the 
questions. 

Then the statistician will delve into two themes-what are the best 
treatments and layout, and what constraints there might be on the es- 
perimental units. These echo the three parts of experimental design we 
just reviewed: treatments, layout, and response. 

5 .  Procrustes, in  Greek mythology, was a cruel highxvayman who owned a 
rather long bed. He forced passersby to fit the bed by stretching them. Procrustes 
is also said to have had a rather short bed; to make his captives fit that bed, he  
sawed off their legs. Theseus eventually dispatched Procrustes using Procrustes' 
own methods. 

[Tlo adopt arrangements 
that we suspect are bad, 
simply because [of  
statistical demands] is to 
force our behavior into 
the Procrustean bed of a 

mathematical theory. 
Our object is the design 
of individual 
experimeiits that will 
work well: good 
[statistical] proper-ties 
are concepts that help 
us doing this, but the 
exact fulfillment of.  . . 
mathematical conditions 
is not the ultimate aim. 

D. R. Cox (7 958) 


