Principles of Research Design

4.1 Desirable Properties d Research Design

We discussed in chapter 1 how afundamental step in scientific inquiry
is to ask, exactly, "What is the question?" Explicit formulation of the
question is essential, because it determines what we do in the design of
the study that is supposed to answer it. This might appear trivial, but much
experience with student-designed studies shows that insufficient criti-
cal thought is given to (a) stating the question exactly and (b) designing
the work explicitly to answer the question.

Justwhat isit that we need to do i n science? Offhand, one might think
that we will want to compare a "treatment" with an untreated " control”
and that's all. It turns out that ensuring that the treatment and control
differ in just the one aspect that tests the question, that the treatment is
effective and unbiased, that the measurements we collect from treated
and control units are precise and accurate, and that theresults are widely
applicable, as well as accessible to available methods and tests, is con-
siderably more demanding. There isno "correct" experimental design or
statistical analysis; both depend on the question being investigated. Once
wereally know our question, however, we can more effectively ook for
appropriate ways to answer the question.

Whether we propose to do asampling survey for comparative studies,
long-term monitoring, perturbation studies, or manipul ative experiments,
certain characteristics are desirable in the design of aresearch plan. These
characteristics includet

1. good estimation of treatment effects,
2. good estimation of random variation,
3. absence of bias,

4. precision and accuracy,

1. | am tempted to add that the research question should be interesting. Many
of us focus too narrowly; if we seek the underlying generalities, even when deal -
ing with local, everyday questions, our work will be more interesting to more
people, and the consequences of our results will reach farther. This matter of
interest isimportant, but | did not add thisideato the list simply because "inter-
esting” is such a value-laden concept that it seemed too subjective.
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5. wide range of applicability, and
6. simplicity in execution and analysis

To incorporate these desirable characteristics, a variety of research
design options are available. The options for design focus on three dif-
ferent parts of research studies: design o treatments (how thetreatments
relate to each other], desi gn o layout (how the treatments are assigned
to experimental units), and design o response (how to assure an appro-
priate response by the experimental units to the treatments). An excel-
lent extended discussion of the topics of this chapter is given in Mead
(1988).

4.2 Design of Treatments

The design of treatments merits more thought than it is often given, be-
cause the treatments define the way we pose the question and how we
carry out thetest. There are many waysto design treatments; this section
details only afew key approaches.

Asan example, | borrow an experiment discussed by Urquhart (1981).
Water from different localities in arid regions often differs markedly in
chemical composition, and unknown differences in chemical content
could affect plant responses. The experiment therefore addressed the
question of whether irrigation using water from different sources led to
different growth of plants. Chrysanthemums were selected as the assay
organism, and water was obtained from 24 different sites and included
distilled water, tap water, brackish water, and water from sulfur springs.
The mums were grown in 360 pots in agreenhouse. Pots were placed on
3 benches, 24 groups of 5 pots each on each bench. Each treatment (water
source) was allocated at random to agroup of 5 pots on each bench, with
an additional random assignment for each bench. The experiment could
berunwith one plant per pot, or more than one. The dependent variable
to bemeasured astheresponseto treatments was height of the plants after
7 weeks of growth

Some More Statistical Terms

Interaction: differences among levels o one
factor within levels o another factor.

Statisticians, as you have no doubt noticed, use cer-
tain everyday terms (normal, mean, significant, pa-
rameter, and error, among others) in speciaized ways.
Before we examine the design of treatments, layout,
and response, we should review some other familiar
termsthat stati sticiansuse with specialized meaning:

Experimental unit: element or amount of
experimental material to which a treatment is
applied.

Factor: set of treatments of a single type
applied to experimental units.

Leve of a factor: particular treatment from a
gracled set of treatments that make up the
factor.

Main effect: differences among levels of

one factor, averaging levelsd other

factors.

Population: a well-defined set o items about
which we seek inferences.

Treatment: distinctive feature, classification,
or manipulation that defines or can be applied
to experimental units.
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Unstructured Treatment Designs

If the 24 water samples were merely a ranidom sample of the different
kinds of water available for irrigation, we could refer to the experiment
as having an unstructured random treatment design. If we had been deal -
ing with comparisons of defined fertilizer formulations on mum growth,
we would have an unstructured fixed treatment design. The importance
of the fixed or random status is that, as already noted, these model s | ead
to slightly different methods o statistical analysis. Actually,unstructured
designs are used less often t han structured designs, because we more often
select the treatments with more specific purposes.

Structured Treatment Designs

Factorial Treatments

If we thought that the rel ative concentration of some key chemical inthe
water was important, we could run an experiment in which we watered
mums with 4 dilutions of original water samples. To make the experi-
ment feasible, wewould pick 6 out of the 24 sources o water; these treat-
ments would vield a set of data that would be conveniently shownin a
table with 6 rows for the sources, and 4 columns for the dilutions. We
havealready encountered this sort of design in chapter 3, when discuss-
ing anova. Such an experiment is referred to as having a factorial treat-
ment design. In this case statisticians call the treatments factors, for ob-
scure historical reasons.

These experiments require much effort i n execution (notethat we re-
duced the number of water sources in our example to make it feasible)
and in analysis (seeSokal and Rohlf 1995, chap. 12). Factorial treatment
designs, however, provide the opportunity to closely examinethesignifi-
cance of dose effects of the factors and o interactions among the factors
manipulated — powerful and desirable features.

Nested Treatments

If the 24 water samples were known to come from sites that could be clas-
sifiedinto, say, 4 regions, then wewould have set up anested or grouped
random treatment design, in which comparisons among groups would
test regional differences. These designs have also been referred to ashier-
archical, to highlight that one variable, water chemistry in our case, is
grouped at a different (and lower) level than the other variable, region.
The effects of waters of different chemistry are compared within each
region; the effects of waters from different sites are compared, naturally
enough, by among-site comparisons.

Nested designsin general are less desirable than the cross-classified
designs discussed in section 3.1 (table 3.6). One reason for this is that
interactions between the higher and the nested variable are not separable
in nested designs. In our water chemistry experiment, for instance, in-
terpretation is limited in that within each region we can compare water
chemistry among only those sites that happen to be located in the geo-
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graphical region; this may not be an entirely satisfactory analysis, because
it may well be, for example, that hard waters predominate i n oneregion
but not in another.

Nesting can occur at different levels. The regions might be one level
of nesting. We could nest at alower level if we needed to know within-
pot variation. To do thislower level nesting, we would grow four plants
ineach pot, instead of one plant. This design would provide information
as to how variable is the growth of plants within pots subjected to each
of the treatments on each bench.

In nested treatment designs, the highest level of classification can be
random or fixed, but the nested level of classificationisusually random.
For example, in the lower level of nesting, the four plants would be se-
lected at random before planting.

Nested designs are usually the result of ashortage of subjects or some
other limitation on experimental units. For example, suppose we were
zookeepers concerned with keeping our rare New Guinean cassowaries
free of lice. We wish to find out whether atopical application of aquick-
acting, easily degradable pyrethrin insecticidereduces number of lice per
feather in males, females, and young. We could run a treatment design
that assigns a dose of pyrethrin to randomly chosen replicate males, to
females, and to young birds. Even better would be to employ a factorial
design, in which we add levels of dose as the factor. Both these designs
require the availability of numerous cassowaries.

It is far more likely, since cassowaries are rare, that our zoo has only a
pair and its singleyoung. Thisshortage may force the choice of nested treat-
ments. We apply a dose of pyrethrins topically to one areaon each bird and
use another area of the same bird as the control: the pyrethrin and control
treatments are nested within a bird. If we select feathers randomly within
each areabefore we count lice per feather, the nested treatments arerandom.

It may not always be evident whether we have a cross-classified or a
nested treatment design. To help clarify the notion, we can lay out the
cassowary/lice experiment as a cross-classified design (fig. 4.1, top) and
as a nested design (bottom).In the cross-classified design it is clear that
acommon set of treatments (pyrethrins, P, and controls, C) are applied
to k replicates (birds) of three types of cassowary (male, female, and ju-
venile).lnthe nested version, we have kreplicates of thethree cassowary
types, and we apply the pyrethrins and control treatment to each bird.
Because the birds may differ in ways that we are not aware of, the treat-
ments (pyrethrin and control) are particular (nested) to each bird. In ac-
tuality, most nested design comes about because we lack replicates. and
only one experimental unit might be available.

Some of the drawbacks of nested designs emerge in figure 4.1. We
are unable to evaluate a possible interaction between the insecticide
treatment and sex or age of cassowaries, because interactions between
variables can be quantified only in cross-classified treatments. In the
nested treatments, we compare the difference between the two treat-
ments within each bird only, rather than among a random sample of
cassowaries. We might also be concerned that there is a correlation
between treatments, either because the lice i n the control area are af-
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fected by the pyrethrins in the treated area, or because the host bird
influences both nested treatments unduly (what if this one bird isinor-
dinately fond of dust baths?).

Gradient Treatments

If we knew that the water samples in our chrysanthemum experiment
differed in concentration of a known substance (salt, nitrate, molybde-
num, etc.), the responses of the plants could be related to that specific
characteristic. The design of an experiment to assess the response o the
experimental unitsto agradient of atreatment variable is called agradi-
ent (or regression) treatment design. Theresulting datawould be analyzed
by regressions of the appropriate model.

Thiskind of design could be used more often thaniit is, particularly if
we deal with comparative research approaches rather than strictly ma-
nipul ative approaches. For exampl e, we might be interested i n how much
the nitrogen that enters estuaries affectsthe concentration of chlorophyll
in estuarine water. Since enriching estuaries by experimentally adding
nitrogen isimpractical, and in some placesillegal, we might have to con-
tent ourselves with comparing chlorophyll concentrations in a series of
estuaries subject to different rates of nitrogen enrichment. We cannot
really fix the rate of nitrogen supply to the experimental units (the estu-
aries).We can, however, select arange of estuarieswith arange of nitro-
gen loading rates and use this as the gradient treatment whose effect on
the dependent variable is assessed by regression analysis.

Fig. 4.1 lllustration of
a cross-classified (top)
and a nested [bottom)
design for the cas-
sowary/lice experi-
ment.
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4.3 Designd Layout

There are myriad ways to lay out studies, that is, to apply treatments to
experimental units. This topic has received much attention and is often
referred to as experimental design. Here | take the liberty of calling this
layout design, because experimental design more appropriately might
refer to all three components o research design (treatments, layout, and
response).

Principles of Layout Design

To try to make some sense of the bewildering diversity of designs, we
will first focus on afew principles underlying layout design, including
randomization, replication, and stratification. Balancing, confounding,
and splitting d plotsare other basic, more complicated, but perhapsless
important principles (atleast in my experience),so | leaveit to theinter-
ested reader to find out about these additional principlesintheadditional
readings at the end of the chapter. All these principles o layout design
deal with how we might assign treatments to experimental units so as to
assess the influence of the treatments on dependent variables. Once we
have learned something about the principles, we will briefly examine a
few selected designs in the following section to see how the principles
are applied.

In this section we will use terms and ideas already broached in our
discussion of statistical analysis in chapter 3. There we reviewed the
methods of analyzing data; here we go over options for layouts that
would produce data amenable to the kinds of analyses described in
chapter 3.

Randomization

Randomization is the assignment of treatments to experimental units so
astoreduce bias. It isdesigned to control (reduceor eliminate) for any sort
of bias. Suppose that we plan to do an experiment to assess the effect of
fertilization with 0, 5, or 10 mg nitrogen per week on growth of lettuce plants
in agreenhouse during winter. If the heat sourceis at one end of the green-
house, we might suspect that there could be a bias; that is, plants grown
nearer the heater will do better. If we place the plants that receive one or
another nitrogen dose at either end of the greenhouse, the bias provided
by the heat might confuse our results. Actually, such gradients might exist
in any experiment, and many o the biasessurely present will be unknown
to us. Therefore, it is always agood precaution to assign the treatments to
experimental units at random, hence nullifying as much as possible any
biases that might be present. The fundamental objective of randomization
isto ensure that each treatment is equally likely to be assigned to any given
experimental unit. In our experiment, this means that each fertilization
treatment applied to lettuce plants is equally likely to be located in any
position along the axis of the greenhouse.

Randomization can be achieved by use of random number tables avail-
ablein most statistical textbooks or random numbers produced by many



Principlesd Research Design

computers. If neither of theseis available, most of usgrizzled experimen-
talists have at one time or another appeal ed to a certain time-tested ploy,
using the last digits of phone numbersin telephone directories. Inrela-
tively simple experiments, we can randomize fairly readily. If we wanted
to grow g lettuce plantsin arow oriented along the axis o t he greenhouse,
we would number each of the pots, up to 9. We then could use the series
of random numbers, which could be

529560280149 36 7 8,andsoon

We would then allocate each o our three treatments (call them doses 1,
2, 3) to pots. For example, treatment dose 1 would be applied to pot po-
sition 5, dose 2 to position 2, dose 3 to position 9. We would continue
with dose 1 applied to position 6 (sinceposition 5 was already occupied),
and so on, until we had completed the number of pots to be given each
treatment.

It should be evident that if the experimental design is more compli-
cated, the randomization may become more elaborate. For example, if
we want to grow the lettuce plantsin several parallel rows, we need to
randomize position assignment within each row.

Replication

Replication2isthe assigning of moret han one experimental unit to atreat-
ment combination (inthe case of a manipulative experiment) or classifi-
cation (inthe case o comparisons).Replication hasseveral functions. First
and foremost, replication provides away to control for random variation—
recall from chapter 1 that ahallmark of empirical scienceistheprinciple
of controlled observations. Replication makes possible the isolation of
effects of treatments by controlling for variation caused by chance effects.
Replication is the only way we can measure within-group variation of
the dependent variable we are studying. Replication allows us to obtain
amore representative measure of the population we wish to make infer-
ences about, since the larger the sample, the more likely we are to get an
estimate of the population.? It also generally improves the precision of
estimates of the variable being studied.

Although at first thought replication appears to be a simple notion,
it is a matter of considerable subtlety. There are different ways to ob-
tain multiple samples, including external replication, internal replica-
tion, subsampling, and repeated measures (fig. 4.2). Each of these has
different properties and applications; immediately below we examine
the procedures and properties of alternative ways to obtain multiple
samples.

2. Thetermreplication hasbeen used in other ways in experimentation. Some
useit to describe the initial similarity of experimental units; others, to say that a
response by the dependent variable can be reliably repeated after repeated appli-
cation o the treatment These are unfortunate and confusing uses that should be
discouraged.

3. This generalization may not be true if, as we increase n, we begin-to in-
clude values for some other, different population. Larger n is hence not always
desirable.
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Fig. 4.2 Different
ways to obtain
multiple measure-
ments. "r" refer to the
specific replicate, "t"
refers to measure-
ments done at
different times.

t to )

External replication

Internal replication

Subsampling

i
Repeated Measures m |:| |:|

External Replication Suppose we areinterested i n measuring the nitrate
content of water in alake. We know that there is bound to be some vari-
ability in nitrate content of water over the lake, so we plan to take more
than one sample; that is, we want replicate samples, so that we might
then calculate a mean value that represents the whole lake.

We could obtain asample of water at agiven time (z,; see fig. 4.2, top),
and then measureitsnitrate content. To get moret han one sampl e, we could
return at times t, and t; and collect more water in which to measure ni-
trate. We thus have three samples of nitrate from the lake. These are in-
deed replicates, but the variation that they would include reflects not only
thevariation of nitrate over the lake, but also the variation that could have
occurred over thetimeinterval (¢, to ¢;) through which they were collected.
Thismethod of obtaining replication, called externalreplication, confounds
the contribution to variation due to time with the variation that is the sub-
ject of the study. If variation through time can be assumed to be modest,
this procedure works well. There may be circumstances whereit is neces-
sary, for logistic or other reasons, to use external replicates.

Internal Replication A better way to obtain replicatesis to collect inde-
pendent samples as contemporaneously as possible (fig.4.2, second row).
This procedure, called internal replication, provides samples that cap-
ture the variation of interest, without confounding the results with the
potential effects of passage of time.
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Clearly, these internal and external replications are extremes in acon-
tinuum; it isthe rare study in which replicetes are taken synchronously,
and there is always some spatial separation to taking samples or treating
experimental units alike. Decisions as to type of replication depend on
whether the effects of time arelikely to beimportant relative to the varia-
tion to be measured. Much depends on the system and its variation. For
example, it may very well be that in alarge lake, with one vessel avail-
able, it may take daysto sample widely spaced stations, and time becomes
a potentially more important factor to worry about; over the course of
days, winds may change or astorm may alter nutrient content of thewater.
Alternatively, if samples taken only some meters apart are as variable as
those taken many kilometers apart, then the sampling can be nearly con-
temporaneous. Logistics of sampling, spatial and temporal scales of the
measurements, and inherent variability of the system studied therefore
affect how we can carry out replication in any study.

Subsampling If at any given time we went to asite within our lake and
collected alarge carboy of water, brought it to the laboratory, subdivided
the contents into aliquots, and performed nitrate measurements on each
aliquot, we would also have multiple samples. These are subsamples,
however, replicates not of the variation in the lake but of the water that
was collected in the carboy (and probably made more homogeneous yet
by mixing in the carboy). In general, variability among subsamples is
smaller, naturally enough, than variability among replicates.

Therelative homogeneity of subsamples may be useful if, for example,
we want to assess the variability of our analytical procedure to measure
nitrate (orany other variable).For that purpose we expressly want to start
with samples of water that are as similar as possible, and see what varia-
tion isintroduced by the analytical procedure by itself.

Hurlbert (1984)argued that it isimportant not to confuse true replica-
tion with subsampling or repeated measurements. A survey o published
papers in environmental science showed that 26% o the studies com-
mitted “pseudoreplication,” that i s, used subsampl es from an experimen-
tal unit to calculate the random error term with which to compare the
treatment effects. That may sound too abstract; | et us examine an example.

Suppose we have a comparative study in which we are trying to de-
termine whether maple leaves decompose more rapidly when lying on
sediments at a depth of 1 m1 compared to a depth of 10 m. Say we arein
a hurry and place all of 8 bags of leaves at one site at 1 m, and 8 more at
another site where the depth is 10 m. We come back 1 month later, har-
vest the bags, weigh the leaf material left, calculate the variation from
the 8 bags, and do a statistical analysis, in thiscase, aone-way anova with
n = 8. If the F test shows that the differences between sites relative to
within bags are significantly high, we can correctly infer that the decay
rates between the two sites differ. If, on the other hand, we conclude that
the results show that there are significant differences betrveen the 1 m
and 10 m depths, not only are we committing pseudoreplication, but we
are also wrong. Since the bags were not randomly allotted to sites at each
o the depths, we have no way to examine whether the differences i n decay
arerelated to depth or if similar differences could have been obtained at
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any two stations, regardless of depth. In this example, the bags are more
like subsampl es than true replicates; differences among the bags measure
the variability within asmall site.

Pseudoreplication occurs if we push data into inappropriate statisti-
cal tests. It is not a problem in the science itself. In the example of the
preceding paragraph, if we were content to make conclusions simply
about the specific depths or stations, rather than about sites and depths
in general, there is no problem o pseudoreplication.

Repeat ed Measurements A special case of multiple measurements that
iscommonin animal research iswhen measurements are repeatedly done
on the same experimental unit over the course of time. The variation
captured by series of such measurements reflects effects of time (asin
external replication), plus the effect of repeated or prolonged exposure
of the experimental unit to the treatment. Unless the experimenter can
be assured that there are no such cumul ative effects (amost difficult task),
repeated measures are not a good way to achieve replication. Repeated
measures are more suited to detect cumulative effects of treatments on
processes such as learning, memory, or tolerance.

In the case of our water sample, for exampl e, repeated measurements
could be used to estimate the time during which the samplestill remains
a good estimate o field conditions. Such data could also be used to as-
sess rate of loss of nitrate to microbial action in the sample bottle, under
whatever conditions the bottle was held.

In the experiment designed to find relief for our lousy cassowaries,
we might want to see if there is indeed a progressive reduction o lice
per bird as aresult of the insecticide treatment. We could repeat the
measurements of lice per feather in both areas of the three birds, perhaps
once aweek for several weeks. This sampling would address the issue of
cumul ative effects following treatment. This sampling would also answer
the question of whether the insecticide reduced lice in the control area
as well asin the treated area. You might note that this is not exactly a
repeated measure design, since at the different timeswe could collect and
count lice on a different set of feathers. This just shows that sometimes
designs are hard to classify into simple categories.

Similarly, although we have discussed different categories for obtain-
ing multiple measurements, in reality these categories are less clear cut
than they might appear, and often create much confusion. For example,
it should be evident that there is a continuum between internal and ex-
ternal replication, depending on the temporal and spatial scales of the
samples and system under study. There is also a continuum between
external replicates and repeated measures, since, for example, we might
repeatedly sample vegetation biomass in a parcel subject to a fertiliza-
tion treatment. If we measure vegetation cover i n a nondestructive fash-
ion, we are obtaining data similar to that of abehaviorist recording activ-
ity of one animal subject to agiven treatment. The issue here is not to be
too concerned with types of replicates, but rather to decide what is the
most appropriate way to assess variation within aset o experimental units
treated alike, for whatever scientific question being asked.
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How Many Replicates?

The preceding paragraphs address the issues o replication as away to,
first, estimate random variation and, second, obtain representative esti-
mates of variableswe wish to study. A third function of replication is to
control variation. Replication can increase.the precision of estimates of
means, for example. This becomes evident when we consider the vari-
ance of amean, sy* = s?/n: our estimates of variation are proportional to
1/n, where nisthe number o replicates. Asit turns out, however, thisis
an oversimplification, since variances do not in reality decrease indefi-
nitely. As nincreases, we are necessarily sampling larger and larger pro-
portions of valuesin perhaps different populations, and there is usually
increased heterogeneity as n increases, which may result in larger vari-
ances. We discussed thistopic in section 2.6, addressing tests of hypoth-
eses. So, the question is, how many replicates are necessary and suffi-
cient? There is, in fact, alarge subfield of statistics that addresses the
choice of sample size.

One quick way to roughly ascertain if the level of replication in a
study might be suitable is to plot a graph of variance versus n. If we
already have some measurements, the variance may be calculated by
picking (at random from among the n replicates) 2, 3, 4, ..., n values
and calculating s. We then plot this versus n. A reasonable sample size
for further study isthat n beyond which the variance seems to become
relatively stable as n increases. Unfortunately, such graphs more often
than not are done after the study is completed, when thereis no chance
to modify the design. More sophisticated versions of the s?/n approach
are the basis for procedures given in statistical texts for determining
sample size. The values of n required by statistical analyses of sample
size are almost invariably higher than most researchers can expect to
obtain. Thisismuck like the well-known exampl e that by the principles
of aerodynamics, bumblebees cannot possibly fly. Bumblebees none-
theless fly — and researchers go on advancing science, even though the
replicate numbers they use should not in theory enable them to evalu-
ate their results.

It has been my experience that, at least in environmental sciences,
number of replicatesis, inthe end, restricted by practical considerations
of logistics and available resources. We often find ourselves choosing
sample sizes as large as possible given the situation, and the number
is usually fewer than might be desirable based on cal culations of sam-
ple size. In actuality, in most fields the numbers of replicates are rela-
tively low, and the adequacy of sample size largely goes unevaluated.
Kareivaand Anclersen (1988)found that 45% of ecological studiesused
replication of no more than 2. They also found that up to 20 replicates
seemed feasibleif plotswere of smaller size, but replication was invari-
ably less than 5 if the experiment involved plots larger than one meter
in diameter.

Some important pieces of research, however, have been unreplicated
manipulations. The experiment that motivated Sir R. A. Fisher to develop
much of statistics, the celebrated Rothamsted fertilizer trials (seechap-
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ter frontispiece), was unreplicated.* Many key experiments that gaverise
to new directionsin environmental sciencewere also unreplicated. Lack
of replication did not prevent the Hubbard Brook whole-watershed de-
forestation experiment (Bormann and Likens 1979), the Canadian Experi-
mental Lakes Areawhole-lake fertilization experiments (Schindler 1987),
or iroNeEX, the km2-scale iron enrichment in the Pacific Ocean (Martin
et al. 1994) from making major contributions to environmental science
(Carpenter et al. 1995).1n these studies the effects of the manipulations
were sufficiently clear that there was little doubt as to the effects of the
treatment, and statistical analysis was not required. Unreplicated stud-
ies cannot, therefore, be disregarded; we merely need to make sure that
we choose our treatments, layout, and response well enough that if the
effectisthere, it will be evident. In addition, newer statistical approaches
promise better waysto scrutinizeresults of unreplicated studies (Matson
and Carpenter 1990).

As discussed in chapter 3, it is good to be wary of studies with very
large numbers of samples or replicates. Statistical comparisons based on
large numbers of observations might turn out to yield statistically signifi-
cant differences (becauseso many degrees of freedom areinvolved),even
though the actual differences found are so tiny that under practical cir-
cumstances the differences might be undetectable or unimportant (e.g.,
see fig. 10.2, bottom).

It is also good to be wary of studiesinvolving very few samples. Com-
parisons based on afew observations lack power, as discussed i n chapter
2. Large and important differences might not be declared "significant" if
replicates arefew. Of course, alarger number of replicates might be unfea-
sible, in which case the researcher hasto sharpen the experimental design
as much as possible, applying design principles that are described next.

Stratification

Replicate experimental units, or sampling sites, have to be laid out or
located over space. Inevitably, there will be differencesin many variables
from one site to another. The effects of all these differences will be re-
flected in the variability of the measurements taken from the replicate
units, and since we aim to compare treatment variation with variation
associated with random error, it is desirable to minimize the variation
attributable to random variation. We might be able to reduce the unde-
sirable random variability if we could isolate the contribution to varia-
tion attributable to gradients in other variables that might or might not
be of interest but are known to vary in our area of study. Once we can
remove the effect of the known variables, we have a better estimate of
random variation and can better compare the effects of the treatment, the
independent variable that is of interest in the experiment, relative to ran-
dom variation.

4. Even the most capable can err — Hurlbert {1984) points out that Fisher him-
self committed pseudoreplication in afirst analysis of data from a manure ex-
periment with potatoes. Fi sher subsequently omitted the offending data, but never
acknowledged the slip.
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Controls

| have hardly mentioned this essential part of ex-
perimentation since chapter 1. Now we have some
more concepts and terminology that allow us to
make a few more distinctions. The term controls
is used in a variety d ways in relation to experi-
mentation:

. Control treatments allow evaluation of
manipulative treatments, by controlling for
procedure effects and temporal changes.

« Replication and randomization control for
random effects and bias.

. Interspersion o treatments controls for
regular spatial variation among experimental
units.

« Regulation of the physical environment or
experimental material (by the experi-
menter) confers better control on the
experiment.

It would be preferable to reserve the term controls
for only thefirst type o use, the one most meaning-
ful for statistical tests. The second and third mean-
ingsare only extensionsd thefirg, to help us under-
stand thefunctionsd replication, randomization,and
stratification. The last meaning has the least to rec-
ommend it. It may derive from the maxim "hold
constant dl variables but the one d interest" but is
unfortunate because in a true experiment the ad-
equacy d a control treatment is not necessarily re-
lated to the degree to which the researcher restricts
the conditions under which the experiment is run. )

To isolate the effects of the " nuisance” variables we lay out " blocks"

or "strata" (hencestratification), within which these variables are more
or less constant. In such stratified designs, if we have j blocks or strata,
we can therefore remove a term j; from g;, the term describing random
variation:

Yy=p+o5+ B+ g5

We discuss stratified experimental designs further below

Basic Experimental Layouts

While there may be as many layout designs as experiments, there are a
few essential layoutsthat illustrate the fundamental principles.

Randomized L ayouts

The simplest way to lay out an experiment (i.e., to assign treatments to
experimental units) is to randomize. The top two layouts in figure 4.3
show randomized layouts in a case where we have alinear or a square
formation of experimental units. The experimental units could be rows
of plotsin afield, ponds, aquariaon alaboratory bench, and so ocn. Two
treatments (shown by black and white boxes) are assigned at random to
the 8 or 12 experimental units.

In experiments in which the number of replicatesis small (fewer than
4-6), arandomized layout may segregate replicates subjected to onetreat-
ment from those given the other treatment (top row, fig. 4.4) leading to
possible biases. With just threereplicates, for example, thereis10% chance
that the first three replicates will receive one of the treatments. Thus, acom-
pletely randomized layout might not always provide the best layout de-
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Fig. 4.3 Layout o
experimental unitsin
rows (left)or in
squares (right] for
completely random-
ized, randomized
block, and systematic
layout designs.

Fig. 4.4 Less desir-
able layouts. The e
refers to emplace-
ments that hold
groups of experimen-
tal units.
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sign. Completely randomized layouts such as that shown on the top right
of figure 4.3 are less subject to the problem of segregated treatments.

The data froin layouts such asthelinear arrangement (fig. 4.3, top left)
and the square (middle right) are good candidates for analysis by a one-
way anova Or equivalent nonparametric tests.

Randomized Blocks

We can lag out experimental units by restricting randomization in one
direction; this is called blocking by statisticians (fig. 4.3, middle). We
discussed this concept above as stratification. In the linear arrangement
of units (middleleft), we can set up blocks b,, b,, b,, and b, and assign
treatments randomly within each block (hencethe name of this layout).
Similarly, we can set up blocks in the square formation (middle right)
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and assign treatments randomly within blocks. Blocking reduces the
possibility of chance segregation of treatments, i n addition to preventing
preexisting gradients and nondemonic intrusions from obscuring real

treatment effects or prompting spurious ones.

The dataresulting from alayout such as that o the middle left panel
o figure 4.3 can be analyzed by a paired t test, a one-way unreplicated
ANOVA, Or equivalent nonparametric methods. The square arrangement of
the middle right panel would yield data amenable to a two-way repli-

cated aNOVA.

Systematic Layouts

Another way to restrict randomizationin linear layoutsis to intersperse
or alternate the treatments systematically (fig. 4.3, bottom left). Thisis
acceptable i n many situations and might be better than a completely ran-
domized layout, because this layout prevents segregation in linear ar-
rangements of experimental units. Data from a systematic linear layout
would be analyzed by unpaired i test or nonparametric tests.

One special case of systematicrestriction of randomization in which
the stratification is doneintwo directions (rowsand columns) is called
alatin square (fig. 4.3, bottom right). Latin squares are useful for ava-
riety of situations. They have been especially valuable in agricultural
work. For instance, if fertilizer trials are done on asloping field in which
there is a strong prevailing wind perpendicular to the slope, a Latin
square design offers the chance to stratify experimental unitsin the two
directions and hence improve estimation of thefertilizer effect. Another
situation in which Latin squares are appropriate is for tests under vari-
ous classifications. One example is wear in automobile tires of differ-
ent brands. If we are testing four brands of tires, we put one of each brand
in each wheel position. We have to have four cars (or kinds of vehicles)
to use in the test. We assign tire brands to each vehicle such that all
brands appear in all four wheel positions. This layout allows us to ex-
amine performanceof all four tirebrands in each vehiclein each wheel

position.

Latin square layouts are analyzed with a three-way anNova, in which
rows, columns, and crops are the three components of the variation:

Lain but Not Creek Squares

In 1782 the Swiss mathematician Leonhard Euier
gave a lecture to the Zeeland Scientific Society o
Holland, in which he posed the following problem.
The Emperor was coming to vidgt a certain garri-
son town. In the town there were Sx regiments,
with sx ranks d officers. It occurred to the garri-
son commander to choose 36 officersand arrange
them in a square formation, so that the Emperor

could inspect one d each d the sx ranks d offi-
cers, and one officer from each regiment, from any
sided the arrangernent.Euler assigned Ldin letters
(ashe cdled them)to the ranksd officersand Creek
letters to the regiments. He solved the Ldin square
and showed that the Creek square could not be
solved simultaneously. Euler was correct, athough
his proof was flawed, but in any case he gave the
name to the experimental layout: Lain squares.
Adapted from Pearce (1965).
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Y=+ I+ + by + &

where r and c stand for rows and columns and t is the treatment effect.
The bracketed ij shows that the kth observation is only one within each
row and column. Latin square layouts are useful but restrictive: the num-
ber of replicates must be equal to the number of treatments, and to ob-
tain replicates we need to run more than one square. Mead (1988) pro-
vides details of the analysis.

4.4 Response Design

In any experiment or sampling, many kinds of responses by the experi-
mental or sampling unit could be recorded. If we were testing the suc-
cess of an antibiotic, we could record presence or absence of colonies of
the bacterium in the agar i n petri dishes to which the antibiotic and bac-
teriawere added. We could also count the number of colonies per petri
dish. We could also measure the area of petri dish covered by colonies.
All these would in away assess the action of the antibiotic.

Thefirst question to ask about a response measurement is whether it
relevantly answers the question posed in the experiment. Is presence or
absence a sufficient response?Do we want a quantitativeresponse?If we
were testing different doseswe might, but we could also be interested in
a presence or absence response at various doses, to identify the thresh-
old of action of the antibiotic. Are the responses meaningful in terms of
the question? For example, area of colony might be just aresponse by a
few resistant cellsthat grew rapidly after the antibiotic eliminated other
cells; if so, areais not the best response to use to evaluate effectiveness
of the antibiotic.

The data resulting from the different measurements would differ in
the kind of analysis to be used. The presence and absence measurements

Some Undesirable Experimental Layouts

in atest to see which increases yield of a fungal
antibiotic, we might have a source for each of the
substrates. This might be inevitable, but this deliv-

We have already noted that layouts such as those
o figure 4.4 are undesirable. The obvious reason
isthat effectsof position of the units might be con-
founded with treatment effects. But there are more
subtle features to notice. At times the units are
placed on different fields, ponds, receptacles,
aquaria, and so on. This may be necessary, for
example, if we are doing studies o responses o
different bacterial clones to pressure and we can
afford only two hyperbaric chambers. When pos-
sible, this isto be avoided, because our replicates
become subsamples by this layout.

At other times we might apply treatments to
units but in away that links the units (fig. 4.4, bot-
tom left). If we are adding two kinds of substrates

ery to the layout makes the units less independent
o each other. We need to watch out for other links
among the units in our layout (fig. 4.4, bottom
right). If we are testing two different diets for cul-
tivation ot musselsand we have only one seawater
source, we might set up seawater connections as
shown in the upper case in the bottom right panel.
That physical link couid make the treatments less
distinct and deprive the units of independence.
The worst situation is one | saw during a visit to an
aquaculture facility. In that instance, not only was
there a link from one unit to the next by flowing
seawater, but one treatment was upstream o the
other (bottom case in the bottom right panel).
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would give discrete responses, binomially distributed data, or Poisson-
distributed data; all would be analyzed by anonparametric method. The
binomially distributed datawould yield counts that are initially discrete
but that could be averaged if the experiment had replicates, yielding a
continuousresponse. The continuous data would be analyzable using
ANOVA, perhaps after some transformation because of theorigin of the data
as counts. The Poisson-distributed datawould give continuous measure-
ment data amenable to anova analysis.

It is often the case that we measure a response not from the experi-
mental unit but from what Urquhart (1981) calls the evaluation unit. For
example, we may use asample of blood from a toucan of agiven species
to assess its genetic similarity to another species. We might measure the
diameter of asample of afew eggsfrom afemaletrout to evaluate whether
diet given to the trout affected reproduction. We take measurements from
evaluation units, but we want to make inferences about experimental
units. We need to make sure, therefore, that the evaluation units aptly
represent the experimental units.

In some cases, we might want to make repeated evaluations of the
response of the evaluation unit. When measuring the length of a wig-
gling fish, perhaps more than one measurement might be warranted; we
might want to do several repetitions of atitration, just to make sure that
no demonic intrusions affect our measurements. |n away, we discussed
this above with the issue of subsampling. Asin that case, these repeti-
tions are used only to improve our measurement, rather than to increase
significance of tests.

4.5 Sensible Experimental Design

| have emphasized conceptsin chapters 1—3 because too many of ussim-
ply go to a statistics book and find a design and analysis that seem to fit
our data. We then make the datafit that Procrustean bed,® often inappro-
priately, and rush on to comment on the results. Designing research and
analyzingresultswill be better with some consultation with aknowledge-
able person.

The first question that will be asked by a statistician is, "What is the
question being asked?" | cannot overemphasize the importance of keep-
ing—at all times—firmly in mind the specific question or questions we
wish to answer. All elsein design and analysisin science stems from the
questions.

Then the statistician will delve into two themes— what are the best
treatments and layout, and what constraints there might be on the ex-
perimental units. These echo the three parts of experimental design we
just reviewed: treatments, layout, and response.

5. Procrustes, in Greek mythology, was a cruel highwayman who owned a
rather long bed. He forced passersby to fit the bed by stretching them. Procrustes
is also said to have had a rather short bed; to make his captives fit that bed, he
sawed off their legs. Theseus eventually dispatched Procrustes using Procrustes'
own methods.

[Tle adopt arrangements
that we suspect are bad,
smply because [ of
satistical demands] is to
force our behavior into
the Procrustean bed d a
mathematical theory.
Our object isthe design
d individua
experiments that will
work well: good
[statistical] properties
are conceptsthat help
us doing this, but the
exact fulfillment of . . .
mathematical conditions
is not the ultimate aim.
D. R. Cox (7958)




