
Statistical Analyses 

Some s t ~ ~ d i e s  produce unan~biguous results, i n  which case we do not need 
statistics. In most cases, however, we  need some objective way to evalu- 
ate differences i n  our results. To provide a way to evaluate results with 
some degree of objectivity, w e  can use diverse statistical techniques, the 
subject of this chapter. 

As mentioned in  Chapter 2 ,  the core statistical notion (provided by 
Sir Ronald A. Fisher) was that of seeing whether the effects of some vari- 
able of interest are likely to be larger than the effects of chance variation.' 
Statisticians have devised many procedures to do such comparisons and 
to establish relationships among variables. 

Most statistical texts start, reasonably enough, by introducing the reader 
to the simpler ways by which  to see how well w7e know the mean of a 
sample, and how sure we  might be that i t  differs from the mean of a hypo- 
thetical population. Then they go on to tests that compare two sample 
means, and so on. I did not follow that pattern in  this book, because this is 
not a book on statistics, but rather an  introduction to principles (not to 
techniques) of doing science. I would have preferred to go right away to 
principles of design of scientific work, but that turned out to be difficult 
without some previous discussion of statistical concepts. Therefore, i n  this 
chapter I review a few statistical tests before going on to principles of ex- 
perimental design in  chapter 4, to provide readers with terms and strate- 
gies of data analysis. Some readers might want to read chapter 4 first and 
return to this chapter as needed. For the sake of reference, I do review the 
array from simpler to more complex tests in section 3.5. 

Throughout, I refrain from entering into arithmetical details for each 
test, because these can be found in  the many excellent statistics textbooks. 
Motulsky (1995) provides a lucid intuit ive introduction to statistical 
analyses. Sokal and Rohlf (1995) give a thorough and authoritative re- 
view of the methods. Here we  will emphasize concepts, but we  will have 
to do a bit of algebra to sort out the concepts. 

1. Chance or random variation is another way we refer to variation caused 
by additive contributions from many and unidentified variables. This is the "left- 
over" variation against which we want to compare the variation caused by the 
treatment we are studying. 

[Wlhere measurement is 
noisy, uncertain, and 
difficult, it is only 
natural that statistics 
should flourish. 

5. 5. Stevens 
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This chapter therefore introduces the concepts underlying some se- 
lec.ted kinds of statistical analyses, emphasizing the strategy of the tests, 
and what the tests are useful for. Out of the plethora of statistical meth- 
ods available, I single out analysis qf vnriance, regression, correlation, 
and analysis of frequencies. These provide the wherewithal to analyze 
data from most types of research discussed in chapter 1, are most fre- 
quently used in  analyses that readers will encounter in  the scientific lit- 
erature, and provide the terms needed for chapter 4.  

The chapter ends with a discussion of transformations of data. These 
are useful tools to better understand the nature of our data, and are also 
devices by which we can recast data so as to meet the assumptions of 
several of the statistical tests. 

3 .I  Analysis of Variance 

Elements of ANOVA 

The analysis of variance [a phrase usually shortened to ANOVA) was de- 
veloped by the English statistical pioneer Sir Ronald A. Fisher. The ANOVA 

is fundamental to much of statistical analysis and to the design of experi- 
ments. It is a genera1 method by which we can compare differences (as  
variances) among means and assess whether the differences are larger than 
may be due to chance alone. 

The ANOVA is applied widely in  scientific literature. K survey of uses 
of ANOVA, however, showed that they w-ere applied deficiently in 78% of 
the papers examined [Underwood 1981). The science community needs 
more critical application, reporting, and interpretation of this most use- 
ful statistical tool. Here we review only some basic principles. 

Analysis of variance allows the separate calculation of estimates of 
variance attributable to treatments (or other components], by assuming 
that the various effects on a variable of interest are additive. The assump- 
tion of additivity is a core idea underlying the nxov.%, and leads to the 
notion that any value of a variable can be decomposed into components 

Y,, = u + a; + &+ 

where i = 1, . . . , a, and j = 1, . . . , n. A given measurement of YIj is thus 
assumed to be made up of the sum of several terms. First, there is an ef- 
fect due to being a Y, which is indicated as p, the grand mean of all the 
values of Y. Then there is a term 2, that describes the effect of belonging 
to a subgroup of values of Y that we will call the treatment, and for which 
we zsk the difference from the overall population. We answer that q7des- 
tion by means of a third term, the error,Gjj. This third component of Yij 
represents the random variations in the jth individual value of Y from 
the ith group. The idea is that the random variation is the variability that 
is left after we have separated the effects of the grand mean and the groups 
(or treatments). For this &,?term to be truly random, the observations within 

2 .  Statistical jargon uses the term error to refer to random variation, not to 
our more common use implying a blunder. 
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groups must have been taken at random from among the population of 
values. The mean of all the E,- has to be equal to zero; some of the devia- 
tions will be from values larger, and some smaller, than the mean of the 
distribution. The estimated variance of E,, is s2, 

These assumptions are another way to say that the observations must 
be independent of each other, and that the distribution of ei, must be 
normal. We also assume that variances are homogeneous, that is, that since 
s2 calculated from different samples of observations estimates the same 
population c2, the sZ values must be similar. As is the practice, Greek let- 
ters are used to indicate that we are referring to parameters, rather than 
statistical estimates. 

The assun~ptions made for AiiOVA, therefore, are additi55tyof components 
of variation, independence of the observations, homogeneity of variances, 
and normalitvof the observations. These assumptions are too often ignored 
in day-to-day analysis of scientific data. Too few of us actually carry out 
preliminary analyses to see if indeed our data do meet the assumptions. 
Although the various statistical procedures are fairly tolerant of violations 
of the assumptions, understanding of the assumptions is important because 
they have repercussions, as we will see in chapter 4, in the design of re- 
search as well as in the method of data analysis. 

If our data violate the assumptions, there are two alternatives. The first 
option may be to apply a different suite of statistical tests that make no 
assumptions about distributions. Below we discuss nonparametric equiva- 
lents of parametric methods that can be applied to data that do not meet 
the assumptions of parametric tests. The second option is to transform 
the data into new scales that do meet the assumptions, and then carry 
out the appropriate ANOVA on the transformed data. Several tcansforma- 
tions are available to solve different problems, as we also discuss below. 

Examples of Types of ANOVA 

Replicated One-way ANOVA 

To make more real the concept of ANOVA, we examine first an example of 
one of the simplest versions: a one-way replicated ANOVA. This layout is 
applicable to test the effects of a variable or classification. Suppose we 
are interesied in  evaluating the firmness of sand along a series of stations 
on a beach. We use an instrument called a penetrometer to measure the 
resistance to displacement by sand; the smaller the number, the smaller 
the force need to penetrate the sand. We take five randomly located mea- 
surements at each of six stations along the beach (table 3.1). 

Now, we could simply calculate standard errors for each of the means, 
and judge whether the means are likely to differ by seeing if the values 
for ( m e a n t  se) for the different means overlap. That is a qualitative judg- 
ment; here we want a more quantitative assessment of the hypothesis that 
there are no differences anlong the means. We can see that there are dif- 
ferences among the stations (the statisticians want to have us refer to our 
stations as the groups). The issue is whether the variation amonggroups 
is larger than the cvithin-group variation (the variation among replicates 
collected at each station, also called the error term). 
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Table 3.1. Measurements of Force Needed for Sand Penetration (Relative 
Units) Obtained from Five Replications at Each of Six Beach Stations. 

Fig. 3.1 Graphical 
examination of 
normality of frequency 
distribution (left) and 
homogeneity of 
variances (right) for 
the data of table 3.1. 

- -~ 

Station 

Replication 1 2 3  4 5 6 
- 

1 2 1 3 1 30 47 5 2 38 
2 5 2  4 2 2 7 3 8 44 40 
3 2 9 3 7 30 41 5 2 2 5 
4 2 0 5 1 4 2 3 2  3 5 3 1 
5 30 44 4 6 41 4 8 39 

Totals 152 205 175 199 231 137 
Means 25.3 41 35 39.8 46.2 27.4 

Data from example used by Krurnbein (1 955) 

To make this comparison, we first ascertain that the data meet the 
assumptions of ANOVA. It is easy to examine the data graphically to check 
on normality by means of a frequency histogram (fig. 3.1, left) and on 
homogeneity of variances by plotting variances versus means (right). The 
data are reasonably normal. The variances are similar, except for the one 
for station I, which is about three times as large as the others. To decide 
whether the variances are homogeneous, xve might try Badlett's test (Sokal 
and Rohlf 1995, chap. 13) or the simpler Hartley's test. When we do these 
tests, we find that the variances in this data set do not differ sufficiently 
to invalidate the assumption. Variances have to differ more, as well as 
increase with the mean, to be a problem. 

The data therefore are reasonably normal, and the variances do not 
change significantly in  relation to the magnitudes of the means. To check 
for additivity we might calculate deviations from the overall mean, and 
see if the deviations are approximately similar for all groups. The other 
assumptions are likely to be less of a potential problem. In this case, we 
decide not to transform the data. Having checked the assumptions, we 
proceed to calculate variances; table 3.2 shows one way to organize the 

Relative Force Units Mean 
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Table 3.2. Analysis of Variance Procedure 

source o f  Sum o f  Degrees o f  M e a n  Square Estimate o f  

Variat ion Squares (SS) Freedom (d f )  (MS) o f  Variance F Test 
- 
A m o n g  groups SS, = C(Ci2/n) - C T  k - I Ms, = SS,l(k - 1 ) 02 + cog2 MS,lI.AS, 
W i t h i n  groups SS, = SS, - SS, k (n  - 1) M S ,  = SSJk(n - 1 ) 02 

Totals C(XJZ - CT k n  - I 

55, and 55, refer to sums of squares among and within groups. The value X,  represents an observation. C, is the total for 
each column in table 3.1; C indicates the process of summation across rows or down columns in table 3.1. The "correc- 
tion term" CT IS C2/kn, where C is the grand total. Degrees of freedom (dfl are arrived at by the number o i  observations 
we made (k = 6 stations, n = 5 replicates), minus 1. We  then divide 55, and SS, by d f t o  get the mean squares (MS, and 
~5,). The mean squares, in turn, are our estimates of among-group and w~thin-group variances. The value to be used in 
the F test is obtained by dividing by the within-group estimate of variation, and separates out the variation due to among- 
group variation. If F = 1, the variation among groups is the same as the variat~on within groups, and there is no group 
effect. 

procedure. [I have added tables such as this and others for those readers 
desiring an explicit account.) Having done these calculations, we can now 
put together the ANOVA table for the beach firmness data (table 3 .3 ) .  

The ANOVA allows us to test xvhether differences among groups are sig- 
nificant relative to random variation estimated by the within-group terms. 
These tests are carried out using the F distribution, so named In honor of 
Fishei The ratios of the estimated variances of a treatment relative to 
random varlatlon are compared to F values that 1 ary depending on the 
degrees of freedom associated wlth the two estimates of variances being 
tested. 

So, the F value we get in table 3 3  is 2.28.  We look up the range of 
values for the F distribution in  tables provided in most statistics texts, 
and find that, for 5 and 24 df, an Fvalue has to be larger than 2 .62  to be 
significant at the 5% probability level. The value in table 3.3 does not 
exceed the 5% cutoff, and we report this finding by adding "NS" after 
the F value, for "not significant." Incidentally, the convention is that if 
the F value is significant at the 5% or 1% probability level (i.e., if the 
calculated F is greater than 2 .62  for a = 0.05 or the corresponding value 

- for a= 0.01), the Fvalue is followed by one or two asterisks, respectively. 
In any case, by cornpanson with the table of F values, we conclude 

that the null hypothesis cannot be rejected: firmness of sand over the 
beach in question is homogeneous over the distances sampled. The mean 
firmness of 37.8 ,  calculated from all measurements, and the within-group 
variance of 69.17 can be taken as estimates of the population mean and 
variance. 

Table 3.3. Analysis of Variance Table for Data of Table 3.1 

Degrees o f  
Source o f  Variat ion SS Freedom (do M S  F 

A m o n g  groups 788 5 157.60 2.28 NS 

W i t h i n  groups 1660 2 4 69.1 7 - 

Totals 2448 29 - - 

SS = sum of squares; MS = mean squares. NS = not significant. 



54 Doing Science 

Analysis of variance might tell us that there are significant differences 
among the groups or treatments, but if we  were testing different kinds of 
insect repellent or airplane wing design, we woulcl want to know which 
of the treatments differed. To do this sort of comparison, people have 
applied t tests or other techniques for comparisons of means. 

Differences between two specific means are often tested with the t test, 
which is a special case of the more general ANOVA. Application of the t 
test to multiple means is problematic, although commonly done. If we  
have five means, we  have at least 10  possible t tests, if the means are 
ordered by size. In this context, degrees of freedom tell u s  how many 
comparisons are possible. IVith five means w e  have (n - 1) degrees of 
heedom,  or four comparisons possible (one df is taken u p  when w e  esti- 
mate the overall mean of the values). Thus,  multiple t tests, if they are 
done at all, need to be limited to four comparisons, and the comparisons 
have to be  selected before we  see the results. The problematic issue of 
multiple tests is a general difficulty; as I have already mentioned. 

In addition to the matter of using degrees of freedom that we do not 
really have, multiple tests often run  the risk of comnliiting Type I1 er- 
rors. As mentioned in chapter 2, whether we  make 20  or 100 compari- 
sons among a set of means, at the 5% probability level by chance alone 
w e  expect 5% (1 or 5 tests, respectively) to be declared significant, even 
if the difference is not truly significantly different. Indiscriminate appli- 
cation of multiple tests is not a desirable practice, because we are court- 
ing Type I1 errors. 

There are many kinds of multiple comparison tests developed to ex- 
amine differences among sets of means in  rather specific situations. Stat- 
isticians do not agree about the use of such tests. Some suggest cautious 
use (Sokal and Rohlf 1995), but  others think that "multiple comparison 
methods have no  place at all in the interpretation of data" (O'Neill and 
Wetherill 1971). Mead (1988) recommends strongly that multiple com- 
parison methods be avoided and that critical graphical scrutiny be done 
instead. 

At this point we have to note that there are two different types of ANOVA. 

In Model I ANOVA the tseatments are fixed. Treatments could be fixed by 
the researcher, as in testing the effects of different drugs on patients or of 
different dosages of fertilizer on a crop. Treatments may also be classifica- 
tions that are inherently fixed, such as age of subjects, color, or sex. For 
example, we could test whether weights of Italian, Chinese, and U.S. women 
differ by collecting data in the three sites. Note that i n  some Model I situ- 
ations the researcher knows the mechanism behind the presumed effects, 
but in other cases, such as the women's weight question, we deal with a 
complex set of unidentified mechanisms that determine the variable. 

In Model I1 A ~ \ ~ O V A S ,  treatments are not  fixed by nature or by the ex- 
perimenter, but are chosen randomly. Exanlples of this may be a study of 
concentration of mercury in 30 crabs that xvere collected in  each of three 
sites, and the sites were chosen randomly. We do not know what might 
be the meaning of differences among sites. The question this design al- 
lows us to ask is whether anlong-group (sites) variation is larger than 
within-group variation. If the F test is significant, the inference from a 
Model I1 ANOVA is that there was a significant added variance component 
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associated with the treatment, while the inference from a Model I analy- 

sis is that there was a significant treatment effect. 
It is not always easy to differentiate between the two kinds of ANOVAS. 

For example, if the sites selected in the beach firmness study were cho- 
sen at random from among many beaches, the study would be Model 11. 
On the other hand, if we selected specific positions along the elevation 
of the beach, to correspond to specific locations, or geological features 
(beach face, berm, crest, etc.), the study would fit a Model I ANOV.%-\. The 
identity of the model to be used matters because, as we saw above, the 
inferences differ somewhat, and the calculations for the two types of ANOVA 

differ to some extent (see Sokal and Rohlf 1995, chap. 8). In the end, the 
differences in conclusions reached via a Model 1 or 11 analysis are a mat- 
ter of nuances meaningful to the statistically versed. The larger benefit 
of considering whether we apply a Model I or Model I1 analysis is that it 
fosters critical thinking about how we do science. 

Multiway ANOVA 

So far we have concentrated on ANOVAS in  which the data are classified 
in one way. One of the reasons why the ANOVA has been an attractive way 
to scrutinize data is that it is applicable to much more complicated data 
sets. For example, in our examination of the weights of women from Italy, 
China, and the United States, we might be concerned with the matter of 
age, so we might want to do the analysis separating groups of females of 
different ages. In this case, we have a data set with two-way classifica- 
tion: country and age. We might further be interested in asking whether 
women from urban or rural settings respond differently; in this case we 
have a three-way .%NOVA. Such multiway classifications can be rather 
powerful analytic tools, aIlowing us to inquire about important and subtle 
issues such as the possible interactions among the treatment classifica- 
tions. These studies permit asking of questions such as, "Do the age- 
related differences remain constant in rural settings, regardless of country 
of residence?" Of course, the offsetting feature is that actually carrying 
out such studies and doing their analysis becomes progressively more 
demanding as the variables multiply. ANOVA layouts are dixrerse, and can 
be used to investigate many levels of several variables. Here we limit 
discussion to two types that introduce the essential concepts. 

Unreplicated Two-Way ANOVA. We can run an experiment in which we 
have two treatments that are applied to experimental units (table 3.4). 
For simplicity and generality, we can use Columns and Rows as the names 
of the two treatments. If we have fixed groups (Model I), we take it that 
the observations are randomly distributed around a group mean (xij); if 
we have random groups (~Vodel 11), the observations are randomly dis- 
tributed around an overall mean for the groups (x). We can set out the 
procedural concepts as in table 3.5, a slightly more complicated ANOVX 

table than table 3.2 .  If we are dealing with Model I ANOVA, we test the row 
and column effects by dividing their mean squares (MS) by the error MS; 
the divisions sort out the effects of both treatments (rows and columns) 
from random error. If we have a Ivlodel I1 ANOVA, we have to calculate the 
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Table 3.4. Layout of Unreplicated Two-way ANOVA. 

Columns 

ROWS 1 2 i c ROW Totals 

1 X; , X; 2 X~, X;, R, 
2 x2 1 x22 x21 x 2 c  R2 
i X, , X, 2 5 X,c R, 
r X, 1 Xr2 xr~ Xrc Rr 

Column totals C, C2 c, cc C 

The X,, in the cells are the observations, and R, C, and C are the row, column, and 
grand totals. 

components of variation from the last column in the table. For example, 
for the row variance, the residual MS is subtracted from the row MS, and 
the difference is divided by the number of columns. 

Replicated Two-Way~~vov~.  The unreplicated two-way layout is seldom 
used in reseatch, but it is a template for many elaborations of experimen- 
tal design. Depending on the questions we ask, and the material avail- 
able, we can add replicates at each rou-by-column cell, we can split cells, 
we can run an experiment with only partial columns or rows, we can 
make the groups be levels of a factor, or we can use one of the variables 
to isolate uninteresting variation so that the effects of the treatment of 
interest are better evaluated. Some of these strategies of treatment de- 
sign are dealt xvith in chapter 4. Mead (1988) is an excellent reference 
for all these designs. 

Multiway replicated layouts are most useful to study the simulta- 
neous effects of two or more independent variables on the dependent 
variable. This joint influence is referred to as the interaction of the in- 
dependent variables and is a powerful concept made available only by 
this type of analysis. The multilevel layout makes possible the investi- 
gation of joint effects of variables, something that no amount of study 
of the separate factors can reveal. We have to note, how~ever, that with 
an unreplicated design the joint effect of the two variables is not sepa- 
rable from the random, residual variation. This separation becomes 
possible only when we have replicates within cells affected by both 

Table 3.5. Analysis of Variance Table for Layout of Table 3.4. 

Source of Estimate 
Variation SS df M S of Variation F Test 

Rows x(R,2/c) - CT* r - I  SSR/(r - 1 ) o2 f cqq2 MSR/MS, 
Columns  C(C,2/rj - CT c- 1  SS& - 1 )  o2 + roc 2 MSC/MS, 
Residual variation (or error: SSc - (SSR + SScj r - I - 1 SS$(r 3 1 ) (c  - 1)  02 

Total SS(X,?) - CT r c  - I 

'CT = "correct~on term," a shoe-hand way to refer to remainder variation. 

r a n d  care  total number of rows, and total number of cells w i t h~n  a row, respectively. SS, and MS, are error sum of squares and error 
mean square, respect~vely. 
For other definitions of terms, refer to tables 3.2 and 3.4. 
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independent variables. This is the major reason for replicated multiway 
,%NOVAS. 

Suppose that instead of the Xjj observations in cells of the unreplicated 
two-way layout above, we set out n replicates, so we have Xijn observa- 
tions. Since it is awkward in this situation to refer to rows and columns, 
we discuss this design as involving two factors, A and B, both of which 
are applied to or affect n replicates. The layout (table 3 . 6 )  is called cross- 
classified if each level of one factor is present at each level of the second 
factor. In this kind of analysis, it is advantageous if that equal replica- 
tion be present in  all cells; missing replicates or unbalanced designs re- 
quire much additional computational effort. 

The model for such an analysis, where there are two factors, A and B, 
and cells hold n replicates, is 

In this equation, Xijk represents the lcth replicate (k = 1, . . . , n) in the treat- 
ment combination of the ith level of factor A and the jth level of factor 6. 
A, and Bj are the effects at the ith and jth levels of factors A and 6. We 
will test the hypothesis that neither the A, B, nor AB effects are signifi- 
cant by the tests implicit in table 3 .7 .  

The models of expected IMS differ when A and B are random or fixed 
(table 3.8) .  It is not always obvious which MS should be in the numera- 
tor and which in -the denominator of Ftests with multiway ANOVA designs 
of this level of complexity or greater. The distinction between random 
and fixed models becomes more important with more complex layouts, 
because, as in table 3 .8 ,  the model determines which MS we divide by to 
examine the significance of the effects of factor and interaction terms. 
Mead (1988) gives rules by which we can select the appropriate IvlSs to 
use in Ftests. Table 3.8 is no doubt daunting; it is included here as a sign- 
post to warn the reader that at this level, the statistical analyses may be 
powerful but increasingly complicated. 

If you have gotten to this stage on your own, you will find it a good 
idea to consult a statistician about these analyses before going on with 
your work. In fact, experience teaches that it is wise to consult with some- 
one with statistical expertise before starting research that demands ex- 
perimental designs described in this section; otherwise, much time and 
effort may be lost. 

Table 3.6. Layout of a Replicated, Cross-Classified 
Two-way ANOVA. 

Variable A 

Variable 8 Subgroup i Subgroup 2 

Subgroup 1 X ~ i i  Xi12 Xzi i X232 
Subgroup 2 & z i  Xi22 x221 X222 

In this case, only two replicate asserttons are included. "Subgroups" could refer 
to a classification (e g , males and females) or a level (e.g., doses X and 3Xof  
a given chemical treatment). 



Table 3.7. Analysis of Variance Formulas for Data of Table 3.6 

Source of Variation Sum of Squares Degrees of Freedom 

Factor A - K (a - 1 )  
bn 

Factor B 

Total abn - 1 

a b n  2 

The "correction term" in this case 1s K = (X X 1 X,,,) iabn.  

Nonparametric Alternatives to ANOVA 

If transformations do not manage to recast data so that assumptions of 
ANOVA are met, we can opt for nonparametric alternatives. These are pro- 
cedures that are distribution-free, in contrast to ANOVA, which makes as- 
sumptions as to parametric distributions underlying the test. For single 
samples, groups, or classifications, the fiuskal-Wallis test is available. 
For tests comparing two samples, the Mann-Whitney U or the Wilcoxon 
two-sample tests are recommended; both these nonparametric tests are 
based on rankings of observations, and calculations of likelihood of de- 
viations from chance. The Kolmogorov-Smirnov two-sample test assays 
differences between two distributions. 

Where we need nonparametric alternatives to parametric Model I two- 
way ANOVA, the Friedman's two-way test is appropriate. Where data are 
paired, Wilcoson's signed ranks test is available. Both of these methods 

Table 3.8. Estimates of Mean Squares for Replicated Two-way ANOVAS of Different Model Types 

Layout in which Mean Squares Estimate the Following 

Within Cells A x 5  5 A 
A is  B is &[d f  = (n - 111 [df = (a - 1  j(b - 1 ) I  [df = (b - 1 ) I  [df = (a 3 111 

Fixed Fixed 0,' 

Fixed Random oe2 
Random Fixed G2 
Random Random oe2 

oe2 + no,,? oe2 + anKE2 oe2 + bnKA2 
oe2 + noAa2 0,' + anKB2 oe2 + noAB2 + bnKA2 
o,' + noAB2 o,' + no,,' + anKa2 oe2 f bnKA2 
oe2 + noaa* me2 + no,,' + an&' o,' + no$ + bnK,' 

From Underwood (1 981 1. 
b 

The "correction terms" in these cases are K,Z = Z (6, - B)'l(b - 1 ), KX = 2 (A, -i iI2i(a - 1)  
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depend on analyses of ranked data. A much simpler test is the sign tesi, which 
merely counts the number of positive and nezative differences among pairs 
of data and then ascertains whether the hequencies of -t and - are in  equal 
proportions. 

3.2 Regression 

Elements of Regression 

In the ANOVA we  have i n  reality been considering the effects of a variety 
of treatments on  one dependent variable. That is, we  had categories that 
we called treatments, and we  measured values of a dependent variable 
in the experimental units. Regression addresses the more general case of 
measurements of two variables. 

In regression, we  express the relationship of one variable to another 
by an  equation that describes one as a function (linear i n  the simplest 
case) of the other variable. The regression can be Y = a t PX and dY/dX 
= P, where Y is tlie dependent  variable, a is the intercept, X i s  the inde-  
pendent  variable, and P, the slope of the line, is called the regression 
coefficient. 

Regression merely establishes the form of the function that links Xand 
Y. Regression cannot by  itself establish a causal link between the two 
variables. To ascertain whether changes in  the independent variable X 
lead to changes in  the dependent variable Y, we need to apply manipu- 
lative experimental approaches discussed above. 

In any data set, w e  expect that the points lie i n  a scatter around a re- 
gression line whose intercept is  a and slope is P .  The line merely repre- 
senis the position of the expected values, if three assumptions are met. 
This model of regression requires the folloxving: 

"Regression"? 

"Regression"sounds odd to us today, since in lay use 
this word has a fairly negative connotation. Itwas used 
in a rather different way by Sir Francis Galton in a 
paper published in 1885, to describe the relationship 
between adult height5 of children and of their par- 
ents. He first used the term "I-eversion" in a lecture, 
but he finally titled the paper "Regression towards 
mediocrity in hereditary stature." Our reaction to his 
use of words is a reflection of changes in usage; we 
m~ist not think his intention was to sugest a degrad- 
ing descent to undesirable (but inherited) height, 
which is what the title might mean to us today. In 

any case, statisticians have retained the term to de- 
scribe the relationship belween variables. 

The paper is also notable because it contains 
one of the earliest bivariate plots (see frontispiece 
for this chapter). Curiously, the data, and Calton's 
treatment of them, are more of a correlation than 
a regression as we might consider ittoday. The plot 
also incli~des a derived variable version of the data, 
because tlie data are repol-tecl as differences for 
each observation from 68.25 inches (presumably 
the average height). The numbers in the body of 
Calton's graph represent the number of individu- 
als in that particular "cell," so the format is a two- 
dimensional frequency distribution, with lines 
added to show the orientation of axes. This may 
be an early effort, but shows sophisticated graphi- 
cal representation. 



[Iln Sicily, thigh bones 
and shoulder hones 
have been found of so 
immense a size, that 
from thence of necessity 
by the certain rules of 
[regression! 1, we 
conclude that the men 
to whom they belonged 
were giants, as big as 
huge steeples. 

Miguei de Cervantes, 
T h e  History of 

Don Quixote de 
la Mancha 

1. The independent variable Xis  measured without error (again we 
are using "error" here in  the statistical sense of an estimate of 
variation, not in the sense of a mistake]. In this sense, the Xval- 
ues are fixed by the researcher (as in the case of Model I ANOVA), 

but the Y values are free to vary randomly. 
2. The linear equation py = w t /3X describes the expected mean 

value of Y for a given X. 
3 .  For a given value IY,, the corresponding values of Yare distrib- 

uted independently and normally, so that Y, = cr + pXi + E,. The 
error terms E, are assumed to be distributed normally with amean 
of zero. There may be more than one value of Y for given values 
of X. 

Uses of Regression 

Definition of the Empirical Relationship of Y and X 

The most common use of regression is to decide if indeed there is a sig- 
nificant empirical relationship between dependent and independent 
variables, and to define the relationship quantitatively. We may be in- 
terested in ascertaining whether, given the scatter of the data, fish yields 
significantly increase as temperature increases, and if so, what are the 
slope, intercept, and variation associated with the relationship. The re- 
gression establishes the empirical relationship, even if we have no 
knowledge of exactly how temperature of seawater leads to larger fish 
yields. 

We can also use regression to quantify a relationship that has a causal 
origin. If we experimentally manipulated the independent variable, we 
can justifiably add the idea of causality to interpretation of the regres- 
sion between X and Y. We have already discussed the idea of causal re- 
lationships above; the regression merely allows us to define the quanti- 
tative nature of the relationship. 

Estimation of Y from X 

If we have an equation that relates Y and x, an obvious use is to make 
predictions about unknown values of Y from the equation and known 
values of X. We might have data on seawater temperature and fish har- 
vest from the same areas, and it might be of interest to calculate fish yield 
for any given seawater temperature. This is readily done by use of the 
linear regression equation fitted to the data. 

Comparison of Regressions 

Regression can also be used to ascertain whether the relationship between 
Yand Xis the same in bivariate samples taken from more than one popu- 
lation. For example, we might be interested in testing whether the rela- 
tionship of feldspar to quartz content in samples of igneous rocks taken 
from the northeast of Brazil is similar from that in  samples collected near 
the Gulf of Guinea in Africa. 
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Analysis of Covariance 

An additional use of regression that merits mention is that of analysis 
of covariance (ANCOVA). If we have data from several groups, say, nitro- 
gen (N) content of leaves of different species of grasses, and we plot N 
content of soil as the X variate, and N content of leaves of grasses as the 
Yvariate, we might find that the N content in  each species depends on 
the soil N content. We are also likely to find that although grasses as a 
group respond in similar fashion (the slopes of the regressions are simi- 
lar) to soil nitrogen, the regression lines are offset, that is to say, the in- 
tercepts (the cr in the regression equation) along the Y axis differ. ANCOVA 

is designed for just such cases; it examines the regressions of each grass 
species, assuming that they are similar and so can be pooled, then uses 
the pooled regression to "correct" for the effect of the Xvariate (soil N in  
our example) and applies F tests to determine whether the intercepts on 
the Y =is differ. 

Analysis of covariance is probably the most restrictive of the analyses 
we have discussed. Use of A N C ~ V A  in tests of hypotheses requires meet- 
ing all the assumptions of ANOVA and of regression. and assumes that the 
regressions used to eliminate the effect of the covariate are similar. 

Significance Tests in Regression 

Establishing the significance of regressions is done by means of tests of 
significance much like the ones used in  ANOVA (table 3.9). If there is a 
change in the Xvariable, XI - X, there will be a concomitant change in Y 
(fig. 3.2). Part of the change in Y, - Y,  is due to the regression relation- 
ship.3 The remainder, Y-  PI, can be thought of as the residual variation 
attributable to random effects of many unidentified variables or chance. 

To do tests of significance in regressions, we therefore partition the 
overall variation in  the data set into a component that measures the ef- 
fect of the regression (the effect of variation of the independent variable) 
on the dependent variable. We also estimate the remaining variation (the 
departure in position of individual points away from the regression line) 
and treat that term as an estimate of the error due to random variation. 

Table 3.9. Sources of Variation, Sum of Squares, and Mean Squares That Estimate the Model in a 
Regression Analysis. 

- -- - - - - - 

Source df SS M S  M S  Est~mates 

1 c (a - P)? Explained by regression (differences between sp o,', I p2x (X - 2)' 
estimated Y and mean of Y) 

Unexplained variation (differences between n -2 C (Ya2  5 A G?X 

measured Y and estimated Y) 

Total (differences between measured Y and mean of Y) n - 1 C ( Y -  V 2  sit 

3. Y is the observed value of the deoendent variable; 'i is  the estimate of such 
a value obtained using the regression;elationship; 2 a n d  'i are the  mean esti- 
mates of the independent and dependent variables, respectively. 
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Fig. 3.2 Diagram to 
illustrate the partition 
of variation in the 
dependent variable Y 
into variation due to 
tlle regression 
relationship, and 
variation due to 
unexplained or 
random variation. X ,  
Y show specific 
values of variables, X, 
P show means o f  all 
values of X and Y. P 
shows estimate of 
mean of Y. 

Individual measurement of X 

change in X 

unexplained variation 
= random errors 

effect of regression 
relationsh~p 

We then compare the significance of the regression term by comparisons 
using an F ratio, as i n  the case of ANOVA. 

In the case of table 3.9 the F test is the quotient of the regression and 
residual MS. The regression MS is  based on one degree of f ~ e e d o m .  The 
total MS has (n - 1) df, so only (n - 2 )  are left for the residual MS. 

The coef f ic ient  o f  de t e rmina t ion  ( rZ )  is a u s e h i  additional statistic that 
can be obtained from regression tables such as table 3.9.  Values of r2 are 
obtained by estimates of the total change in  Y created by the change in  X ,  
carried out i n  the calculations of table 3.9.  If we  further divide sg by s$, 
and multiply by 100,  we estimate r Z ,  which is  the percentage of the varia- 
tion in  Y that is explained by variation in  X. The r2 is  used rather fre- 
quently and too freely (Prairie 1 9 9 6 ) .  We will discuss its properties, util- 
ity, and drawbacks after correlations are introduced in  the following 
section. 

We have dealt with Model I regression, in xvhich the X s  are fixed. Model 
11 regression applies to circumstances i n  which both variables are sub- 
ject to  error. Model I1 regression is a more complicated subject, with sev- 
eral different cases, whose properties are still not  well understood, and 
in  which tests of significance are less straightforward than those of table 
3 .9 .  hfodel I1 regressions require somexvhat different calculations and 
tests. One way to do unbiased Model I1 calculations is to use the geomet- 
ric mean approach (see Sokal and Rohlf 1 9 9 5 ,  chap. 14 ,  which reviews 
several different Model I1 cases and provides the formulas needed). Clear 
discussions of applications of Model I1 regression in  marine biology and 
fisheries sciences are provided by Laws and Archie (1981) and Ricker 
( 1 9 7 3 ) .  When scatter around regression lines is relatively large, use of 
Model I and Model I1 calculations yields different results, so with such 
data it is more important to apply the most appropriate model. Distinc- 



tion of the two models is less important in  cases in which the scatter of 
the data around the regression line is relatively modest, because there 
the two models lead to similar results. 

Of course, not all relationships are linear, nor are we interested only 
in two-variable relationships. For such applications (multiple and cur- 
vilinear regression), consult Sokal and Rohlf (1995, chap. 16). These 
topics are also treated well by Draper and Smith (1981), who provide a 
clear account of methods, but demand understanding of matrix alge- 
bra. Fortunately, the complicated calculations for nonlinear regression 
are done for us by most software packages, so we need not be deterred 
from their use. 

If transformations fail to make data meet the requisite assumptions for 
regression analyses, we can apply nonparametric methods. These tests 
ascertain only whether the Y increases or decreases as X changes. 
Kendall's rank correlation is one option for a nonparametric alternative 
to regression. 

Regression Analyses with Mult ip le Variables 

In general, it seems reasonable to think that more than one independent 
variable may affect values of a dependent variable. Often we can mea- 
sure responses of a dependent variable to the influence of several inde- 
pendent variables, and subject the data to examination by methods such 
as multiple regression or the related path analyses, techniques that are 
well described in Sokal and Rohlf (1995). These methods are not a pana- 
cea. First, the analyses require all the assumptions of regression analy- 
sis. Second, if there are correlations among the independent variables 
whose effects are to be evaluated (a phenomenon called collinearity), it 
is not feasible to unambiguously estimate the effects of each variable. 
Methods to test whether there are collinearities among variables thought 
to be independent are given by Myers (1990). 

The inappropriate use of multiple-variable analyses is common. For 
example, Petraitis et al. (1996) found moderate to serious collinearity in 
65% of examples of use of path analysis in evolutionary biology. More- 
over, these analyses should not be interpreted as showing causality, but 
co-relationships (see section 3.3). Results coming from these sorts of analy- 
ses are, in  the terms of chapter 1, more characteristic of the initial de- 
scriptive phase of scientific work, creating interesting observations whose 
causes need study by manipulative metl-rocls. 

3.3 Correlation 

Correlation is a measure of the degree to which two variables vary to- 
gether; this is noi the same as regression, which expresses one variable 
as a function of the other. Correlation and regression are related in  that 
both treat relationships between two variables and in that the formulas 
used in  calculations are similar. It is therefore not surprising that they 
are often confused. Table 3.10 summarizes the applications of regression 
and correlation. 
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Table 3.1 0. Situations Where Regression and Correlation Are Applicable. 

Nature of the Two Variables 

Purpose Y Random, X Fixed Y,, Y, Both Random 

Describe relationship of one variable to another, Model i regression Model I I  regressiona 

or predict one from the other 

Establish relationship between variables Meaningle~s,~ but can use r 2  as estimate Correlation 
of % of variation in Y associated with coefficient r 
variation in X 

Adapted from Sokal and Rohlf  (1 995) 

",Model I is generally ~nappropriate,  except in t h e  c o m m o n  Berkson case, w h e r e  values o i X  are subject  to e r r o r ,  bu t  t h e  levels of X are 
controlled by t h e  experimenter .  Since it is unlikely that  t h e  er rors  introduced by t h e  experimenter  and  t h e  random errors  are correlated, 
Model I applies. 
bMeaningless because correlation is not  definable if we fix one  of t h e  two ijariables. 

If we  wish to establish and estimate the dependence of Y on X, or 
describe the relationship of Y and X ,  we can use  Model I regression if Y 
is  random and X i s  fixed. If the two variables are random (let u s  call them 
now Y, and Y,, since they are random, and we  have been using Y for 
random variables), we can use Model I1 regression, except in a few cases 
listed by Sokal and Rohlf (1995, chap. 15). If both Y, and Y, are random 
(and normally distributed), we can calculate the correlation coefficient, 
I-, and carry out significance tests. 

If we  wish to establish the association or interdependence between the 
two variables, Y being random and X fixed, we  can stretch the interpre- 
tation of r by calculating r Z  as an  estimate of the  proportion of the varia- 
tion in Y that is  explained by variation in X. This rZ has been defined in  
section 3.2 ,  where we called it the coefficient of determination. It is pos- 
sible to calculate r even if we have data best suited to a regression analy- 
sis. In these cases the r calculated can be taken only as a numerical value, 
not as an estimate of the parametric correlation between the two variables. 

Correlation coefficients and coefficients of determination are among 
the most frequently used statistical tools. When we use these statistics, 
however, we must be aware of certain pitfalls, as noted by Berthouex and 
Brown (1994) and many others. 

First, as discussed in  chapter 1, correlations cannot be  taken to mean 
that changes in  X c a n s e  changes i n  Y.  As another example, consider fig- 
ure 3.3, where the data yield an r = 0.864, which  can be shown to be 
significant. Yet the values plotted on the x axis of figure 3.3 are the first 
six digits of 7c, versus the first six nonzero Fibonacci numbers on  the y 
axis.' There is no  reason to think that there is  any link-causal or other- 
wise-between these numbers, and  in  fact the relationship is not  even 
predictive-the line fitted to the data does not predict the next Fibonacci 
number (1 3).  

4.  Fibonacci numbers are the sequence of numbers formed by adding the two 
prior numbers (0 ,  1, 1, 2, 3 ,  5 ,  8, 13, 21, . . .), named after the mathematician 
Leonardo Fibonacci (c. 1170) of Pisa. 
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Second, data with quite different features might yield the same r. Fig- 
ure 9.4 shows that remarkably different data sets can yield an r of 0.82. 
This example reminds us that it is always desirable to plot data graphi- 
cally before proceeding to statistical analyses. 

Third, the likelihood of finding significant r or r' increases as the num- 
ber of observations increases, even if there is no relationship between Y, 
and Y,. I-Iahn (1973) calculated values of r' between unrelated Xs and Ys 
that would be required to find a level of significance. With just three 
observations, for instance, 9 would have to be 0.9938 before it could be 
declared significant at the 0.05 level. With 100 observations of Y, and 
Y,, a significant relationship would be declared even with an 13 of 0.04. 

We should therefore be wary of correlations or regressions computed from 
low numbers of observations, because in such circumstances it is hard to 
show that possibly iinportant differences are significant. We should also 
be wary of correlations or regressions clone with many, many observa- 
tions, because,in these cases it is too easy to show that minor, perhaps 
uninteresting, differences are statistically significant (cf. fig. 10.2 bottom). 
Regardless of the number of observations, the ability to predict Y from X 
using a regression is limited by the scatter of the points. Regressions with 
9 < 0.65 have low predictive power, and should be interpreted accord- 
ingly (Prairie 1996). 

Fourth, the estimates of r or r2 depend on the range of values (and 
number of observations and their spacing) of the Y, variable. This is evi- 
dent in figure 3.4, where different 3 values result from the use of differ- 
ent subsets of the full data set shown at the top. Data sets in the top and 
second panels provide a fair assessment of the relationship between Y, 
and Y,. The narrow range in Y, in  the third panel makes it impossible to 
discern the relationship (note nonsignificant r). Although the fourth panel 
yields a good assessment of the correlation, in the absence of further data 
a skeptical reader would not be convinced that the linear relationship 

Fig. 3.3 Another 
example of why care 
is needed in interpre- 
tation of correlations: 
values of X are the 
first six digits of n 
(314159); values of Y 
are the first six 
nonzero Fibonacci 
numbers (112358). 
Modified from 
Berthouex and Broxvn 
(1994). 
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30 

30 - 
Fig. 3.4 Correlation y = 0 . 9 5 ~  + 5.38, r2 = 0.946, r = 0.973" 
statistics calculated 
for a data set (top) and 
for subsets of the 20 - 

same data (below). 
Modified from 
Berthouex and Brown 10 

1 

(1994). 7 10 1 3  16 19 22 

exists. The spacing of the observations in the X variable and the range 
thus need to be carefully planned in  designing studies, as discussed in 
more detail in section 4.2 .  

Correlation and its relationship to regression, its near cousin, and to 
other statistics have always been confusing. For some definitions and 
identifications of the different ways r has been understood, see Rodgers 
and Nicewander (1988). To clariij. some of the issues, table 3.10 summa- 
rizes the purposes of regression and correlation, and conditions for the 
application of these two related kinds of analysis. 

The significance values of correlation coefficients are tested by t tests. 
These significance tests ascertain whether the association between the 
two variables is greater than expected by chance alone. Recall the dis- 
cussion in  section 1.1 about interpretation of the mechanisnx that give 
rise to correlations. 
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Correlational statistics have proliferated in  many fields in which ex- 
perimental approaches are not readily available. There are also many ways 
to extend the correlations to more than two variables, including such 

as principal components and factor analysis. These are usually 
p i t e  demanding computationally and ambiguous in interpretation. Much 
more accessible are nonparametric tests, including Kendall's or Spear- 
man's rank correlation, which measure the magnitude of correlation. The 
breathtakingly simple O h s t e a d  and Tukey's corner test (Sokal and Rohlf 
1995, chap. 151 is useful, but discerns only the presence or absence of 
correlation. 

3.4 Analysis of Frequenc ies  

So far we have addressed aualyses of continuous measurement data. Re- 
call, however, that there are other kinds of data that are not continuous. 
Moreover, we can easily convert continuous data into noncontinuous data 
by binning, discussed above. Noncontinuous data are also often shown or 
obtained as frequencies. These kinds of data require different methods of 
analysis. Here we first discuss goodness-of-fit tests in one-sample and 
multiple-sample situations, then go on to tests of independence. 

Goodness-of- Fit Tests 

If we collect a set of data that can be expressed as frequencies, we often 
want to know whether the frequencies in our sample match those ex- 
pected on the basis of a theory or some previous knowledge. Such situa- 
tions are common; for example, in  genetics, expected frequencies of off- 
spring can be calculated based on accepted rules, and compared to 
measured frequencies. Most people who have had any training in  science 
at all have been exposed to the chi-square (xZ) test that has been tradi- 
tional for such purposes. Sokal and Rohlf (1995, chap. 1 7 )  suggest that 
the xZ test be replaced by something called the G test, for theoretical rea- 
sons, plus the G test involves easier computation. G statistics are distrib- 
uted approximately as xZ statistics. G tests of goodness of fit to an expected 
frequency can be readily done for a single data set, to be compared to an 
expected frequency. G tests are also possible for frequency data that are 
tabulated in more than one way, for example, in the case where number 
of young per nest is recorded for n individual parent birds, or where the 
question refers to the frequency of sex of the young in  the nests being 
studied. 

The Kolmogorov-Smirnov test is another nonparametric procedure 
useful for continuous frequency data. This test is more powerful than the 
G or x2 tests, particularly when dealing with small sample sizes. 

Tests of Independence 

There are circumstances in which it is more interesting to ask whether 
two variables or properties interact with each other, rather than to ascer- 
tain the exact frequency of occurrence. We have already encountered the 
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notion of interaction between variables in  discussing multiway ANOVA 

analyses. 
One example of a question that addresses interactions with frequency 

data might be whether moths with light or dark color gain differential pro- 
tection from predators. An experiment to test the question would involve 
exposing 100 moths of each color to predators in  the field and recording 
survivors after a certain interval of time. We then count the frequencies of 
light and dark survivors, and of light and dark moths presumably eaten by 
predatory birds. If the properties of color and survival do not interact, we 
would expect that frequencies of the four classes should equal the product 
of the proportion in each color that were exposed (0.5 in this experiment), 
multiplied by the proportion of moths eaten in the overall sample. 

Such two-way (as well as multiway) data sets are shown as contingency 
tables. Data of such structure can be evalnated by application of G tests 
of independence (Sokal and Rohlf 1995, chap. 3 7 ) ,  which make use of 
the proportions of marginal totals (the sums of rows and columns) to 
calculate departure from expected hequencies. These tests are similar to 
the xZ contingency tests also used for the same purposes. The G tests of 
independence are applicable to data for which either the marginal totals 
are not fixed or one property is fixed. 

One advantage of the contingency xZ or the G tests is that the frequen- 
cies are additive. This permits testing of any selected specific compari- 
sons among cells, rows, or  columns in  a contingency table. We could 
compare, for example, the significance of color only within survivors in 
our moth experiment. This flexibility provides a way to extract much 
information from frequency data. 

In some selected circumstances, which we will refer to as repeated 
measures, there may be interest in changes in a property measured in the 
same individual or set of experimental units. The McNemar test and 
Cochran's Q test are two nonparametric statistics available to assess the 
degree of correlated proportions in such special circumstances. 

3.5 Summary of Statistical Analyses 

I have mentioned a number of statistical analyses in the preceding sec- 
tions. Table 3.11 summarizes these analyses and links then1 to the differ- 
ent types of data discussed in chapter 2. Table 3.11 is by no means ex- 
haustive; instead, it lists representative ways to scrutinize a variety of 
data and situations that arise commonly in doing science. Sokal and Rohlf 
(1995) discuss other options. 

Regarding statistical tests in general, - use tests after you are well acquainted with the data (let the data 
speak first); 
apply tests that are appropriate (test assumpiions, note the type 
of data and the nature of the question); 
subject test results to skeptical scrutiny (graph the data first, know 
what results of tests mean); - avoid using tests that you do not understand, or whose assump- 
tions you may not have tested; and 
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Table 3.1 1 Type of Data, a n d  Comparisons Prowded by Var~ous Stat~stical Analyses 

Type of Data 

Nature of Samples Measurement Ord~na l  Nom~nal 
Type of Question or Groups (pararnetr~c) (nonparametric) (nonparametric) 

One-sample goodness of f i t  
to randomness 

Difference between two 
sarnples or groups 

Difference between two 
sarnples or groups 

Differences among more than 
two samples or groups 

Differences among more than 
two samples or groups 

Relationship of a variable to 
another 

Relationship of a variable to 
another 

Relationship of a variable to 
others 

Covariation of two variables 

Covariation among more 
than two variables 

lndependent 

Related 

lndependent 

Related 

Y random, X fixed 

Y, and Y2 random 

Y random, 
X,, . . . X, fixed 

Y, and Y, random 

Y,, . . . , Y, random 

Unpaired t test 

Paired t test 

One-way ANOVA 

Two-way ANOVA 

Model I regression 

Model II regression 

Model 1 multiple 
regression 

Correlation 

Multiple 
correlation, 
principal axes, 
factor analysis 

Kolrnogorov- 
Smirnov 

Mann-Whitney 
U test 

Wilcoxon 

Kruskal-Wallis 
one-way 

Friedman's 
two-way 

Kendall or 
Spearman rank 
correlation 

- avoid the temptation to apply a test just because it is available in 
your software programs. 

Often, a well-drawn figure, with measures of variation and a clear vi- 
sual message (see chapter 91, is a far better way to examine, show, and 
understand your data than complex calculations done by a software pack- 
age and presented in a fancy though perhaps indiscernible graphic. 

3.6 Transformations of Data 

In chapter 2, I mentioned that transformations were convenient ways to 
recast data so as io convert frequencies of data to normal distributions, a 
basic assumption of many statistical analyses. In this chapter I have in- 
troduced further assumptions associated with ANOVA and, most particu- 
larly, with regression analyses. 

I should add that despite the space I give to assumptions and transfor- 
mations, these are issues that are readily resolved and are not usually a 
problem. Fortunately, it is often the case that one transformation helps 
solve more than one violation of assumptions of a particular test. In ad- 
dition, both ANOVA and regression analyses are fairly tolerant of violations 

C or X' 

C o r x 2  

McNemar 

G or x2 
goodness of fit 

Cochran's Q test 

Contingency G 
or ,y2 test 
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Frequentist vs. Bayesian Statistics 

As we end the twentieth century, there are revi- 

sionist scientists who prefer t o  replace the conven- 

tional "frequentist" approach to  data analyses with 

a Bayesian approach. Frequentist refers to the ap- 
proach based on  how frequently one would expect 

to  obtain a given result if an experiment were re- 

peated and analyzed many times. Bayesian statis- 
tics derive fi-om a theorem formulated in  a paper 

published in 1763 by the Reverend Thomas Bayes, 

an English amateur mathematician. Bayesian analy- 

ses allow the user t o  start with what  is already 

known, or supposed, and to  see how new infor- 

mation changes that prior knowledge, hunches, or 
beliefs. 

Bayesians f ind the frequentist assumption of a 
fixed expected mean value for given variables un- 

acceptable; even if such fixed values existed, they 
argue, such values would not readily defined by 

randoin sampling, in  view of the pervasive varia- 

tion that characterizes nature. Frequentists are lim- 

ited to making statistical claims about "significant 
differences" based on  probability disti-ibutions, 

variously expressed as "confidence intervals." 

Everyone admits that such intervals are ambiguous 

in definition, interpretation, and use. For example, 

vve can consult a statistical table of r values, where 
2 irequentist might Find that, with 50 observations 

(not an unusually large number of observations), a 

relationship can be said to be statistically signifi- 

cant at the 0.05 level, even though the correlation 

coefficient might "account" for only 7% of the 
variation among the observations. While statistically 

significant, would such a concl~ision be scientifi- 
cally significant? 

Bayesians openly admit that science is subjec- 

tive and argue that explicitly admitting the use of 
prior insights-informed hunches-to search for 

scientific explanations is a more rational approach, 
rather than make statistical claims based on  unat- 

tainable objectivity. Frequentists respond that no 
human endeavor is perfect and that their approach 

provides a way to  reduce possible biases; they fear 
that use of prior probabilities allows biases to  enter 

the field of science and at worst intimates that sci- 

ence is just another socially constructed belief. To 
many frequentists, this is an alarming concept, as 

discusseci more extensively in the last chapter of 
this book. 

In any event, the dispute is not just about sta- 

tistical methods, but  a b o ~ ~ t  ways of thinking about 

science, and the arguments will no doubt continue 
and wi l l  l ikely invigorate h o w  we d o  science in  

coming decades. More  details on the issue appear 

in Science (1 999) 286:1460-1464, American Stat- 

istician (1 997) 51 :241-274, and in Ecologica/,L\p- 

plications (1 996) 6:1034-1 123. 

o f  assumptions. Nonetheless, I devote space to  these matters because they  
force sc ru t iny  o f  da la a n d  he igh ten  o u r  axuareness o f  t h e i r  nature.  These 

are issues tha t  w e  tend  t o  r u s h  t h r o u g h  in o u r  anx iety  to  get the  answer 
t o  the quest ion, " Are  the  di f ferences s ign i f icant  or no t?"  

I e n d  th is  chapter with a d iscuss ion o f  de r i ved  variables. These are 

the  resu l t  o f  ye t  another c o m m o n  class o f  t ransformat ion,  carr ied o u t  t o  

express re la t ionships such  as rates o r  percentages, o r  for  r e m o v i n g  effects 

o f  a second variable b y  a n  a r i thmet i ca l  operat ion.  

Logarithmic Transformations 

T h e  logar i thmic  t ransformat ion i s  u s e f u l  in a var ie ty  o f  ways. W e  have  

a l ready seen in chapter 2 h o w  i t  ensures n o r m a l i t y .  In regressions (fig. 
3.5, t o p  three panels),  l o g  t ransformat ions l i near i ze  r e l a ~ i o n s h i p s . ~  A l o g  

5.  I should note here that use of linearized regression can give rise to serious 
errors in estimates of slopes and intercepts (Motulsky 1095, Berthouex and Brown 
1994). Software available for desktop computers allows painless calculation of 
nonlinear relationships where needed. 
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Transformations and Graphical Analysis of Data 

The preparation of data for statistical analysis is only 
one reason why we  should be aware of data trans- 
formations. A second, and probably more general 
and important reason is that our understanding of 
the nature of data and data presentation is fur- 
thered by knowing how transformations reveal dif- 
ferent aspects of data. 

Consider, fol- example, the two graphs in this 
box. The different symbols may be disregarded for 
present purposes. A quick glance at  the top graph 
might lead us to conclude that variability and cen- 
tral tendency of concentrations of iron decrease as 
chlorinity increases. Similarly, cursory examination 
of the bottom graph might suggest that variability 
in iron concentl-ation decreases, but that, contrary 
to what was concluded from the top graph, cen- 
tral tendency remains about the same. In fact, both 
graphs show exactly the same data; the only dif- 
ference is that the Y axis is in an arithmetical scale 
in the top graph and as a logarithmic scale in the 
bottom. There is no sleight of hand intended in 
either case; it is simply that use of different scales 
leads us to see different features of the data. In the 
case of the arithmetic scale, the data display makes 
us focus on the higher values; the log scale expands 
the lower value range and lets us see more of the 
structure of the data there. Both representations 
are "true"; it is just that choice of scale changes the 
depiction in set ways. 

This example makes clear ;hat (a) routine ex- 
amination of axis scales (and of units) should pre- 

cede interpretation of any graph, and (b) transform- 
ing data in different ways makes apparent differ- 
ent aspects of the data. Both of these features are 
eminently useful in practicing science. 

0.01 . 
0 5 10 15 20 

Chlorinity ( g  1.') 

Different scales reveal different features of data: 
scatter plot of concentrations of disscived iron and 
chloride in  waters of the  Ebro Delta Lagoons, 
collected by my colleague, Francisco Comin. Data 
are shown plotted i n  arithmetical (top) and 
logarithmic (bottom) scales. 

transformation also assures addi t ivi ty  even  if components  of var iat ion 
are mult ipl icat ive,  for example,  Yij = p aj qj. T h e  log t ransformation wil l  
convert t h e  equat ion to a n  addi t ive form that  meets  t h e  assumpt ion  of 
additivity: log Yij = log p + log ai + log E,,. Log transformations also are 
useful  w h e r e ,  as  i n  t h e  t h i r d  pane l  01 figure 3.5, var iances increase as  
means  increase; i n  s u c h  instances, logarithmic transformations make  t h e  
variance i n d e p e n d e n t  of t h e  m e a n  a n d  improve homogenei ty of t h e  vari- 
ances.  Log transformations therefore sustain assumptions of normali ty ,  
linearity, additivity, a n d  homogeneity, a n d  make a linear regression analy- 
sis possible. 

Of course,  w e  c a n  t ransform t h e  Y, t h e  X ,  or bo th  variables before re- 
gression analysis  [fig. 3.5, t o p  three panels).  T h e  choice d e p e n d s  o n  t h e  
nature of the  data .  Transformation of Y values (fig. 3.5, top)  i s  appropri-  
a te  w h e r e  percentage changes  in Y vary l inearly w i t h  changes  i n  X. 



Logarithmic 

Y 

log Y = loga c  b logX 

Y 

S q u a r e  Root 
0 r 

Reciprocal 
( a + b X ) Y = I  

Fig. 3.5 Transformations i n  regression. For each data type, the arithmetical version is  on the 
left and  the transfornled variables are on the right. Top three panels: Different forms of logarith- 
mic transformation. Fourth panel: Square root transformation. Bottom panel :  Reciprocal 
transformation. 
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Logarithmic transformation of the Xvalues is reasonable where percent- 
age changes in  X are related to linear changes in  Y (fig. 3.5, second 
F'ailel). Logarithmic transformations of Y and Xare useful in data xvhere 
there is a much larger increase in one of the variables relative to increases 
in the other when data are plotted in  arithmetical scales (fig. 3.5, third 

panel). 
Scientific data are commonly analyzed after log transformations. This 

comes hom the expectation that variability of data will be proportional 
to the magnitude of the observations. We want to evaluate differences 
among means in  a way that expresses variation relative to magnitude of 
the values. Since log transformations do exactly this, they are a natural 
and convenient scale in which to examine scientific data. Mead (1988) 
therefore suggests that rather than ask, "When should data be transformed 
logarithmically?" we should ask, "When is it reasonable to analyze data 
in other than a logged scale?" 

Square Root Transformations 

In chapter 2 ,  1 noted that square root'transformations make count data 
appear normally distributed and assure independence of mean and vari- 
ance. Square root transformations of Y values also add linearity, as well 
as homogenize variances (fig. 3.5, fourth panel), helping meet the assump- 
tions of regression. Note that the square root transformation has an effect 
similar to, but less powerful than, that of log transformation. 

Reciprocal Transformations 

Reciprocal transformations are of the form 1/Y (fig. 3.5, bottom). This trans- 
formation is important to allow regression studies of data such as found in 
figure 3.5, bottom left. The reciprocal transformation linearizes the relation- 
ship of Y to X in data sets that originally have a hyperbolic relationship. 
One example of a hyperbolic relationship is a dilution series, commonly 
used in microbiology, in which a fluid containing microorganisms is seri- 
ally diluted by the transfer of a unit volume from one dilution to the next. 

Linearization of data may lead, however, to biased estimates of in- 
tercepts, slopes, and r. In the reciprocal transformation, for example, 
the values at the large x (small llx) end of the range will be squeezed 
together, and values at the other end of the range will appear to vary 
greatly. This distortion biases the position of the line of fit. This trans- 
formation should therefore be used with caution. Refer to the review 
by Berthouex and Brown (1994) for further details before using linear- 
ization transforn~ations. 

Derived Variables 

Types of Derived Variables 

Scientists use a remarkable variety of variables that are created by arith- 
metical transformations, such as division of two original variables. Such 
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manipulations lead to definitions of rates, percentages, and ratios, all of 
which  are core features of doing science. Another common data manipu- 
lation is to remove the effect of a second variable (implicitly assuming 
additivity of effects) by subtracting the effect of the second variable from 
that  of a first variable. 

It is  not widely appreciated, however, that such data manipulations 
may give rise to artifacts that need to be kept  clearly in  mind to prevent 
confusing artifacts and actual effects. First, consider the 1,000 random 
values of Y (restricted to numbers between 1100 and 1220) and X (any 
three-digit number) plotted i n  figure 3.6 (top left): these are random num- 
bers, so there is no correlation at all among values. If, on the other hand,  

Fig 3 6 Spurious correlations created by use of derived variables Data are series of random, 
numbers fn(X), random numbers between 1100 and 1220 fn(Y) (Kenney 1982) Top lef t  V d h -  

of Y plotted versus values of X Top  right Same data, plotted as Y - X on y axis, versus X ofi 
&xis Bottom le f t  Same data, plotted as YIX versus X, with arithrnetlcal scales on the axes 
Bottom right Values plotted as Y/Xvelsus X, thls tlmc wlth Lues bearlng log scales ReprmL 
with permission from Kenney, B. C .  1982. Beware of spurious self-correlations! klhter Res. 
Bull .  18:1041-1048, copyright of American Water Resources Association. 8 

5 
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we plot YIXversus X, a marked relationship appears (fig. 3.6, bottom left), 
merely because of the presence of X in  both axes. Quite often we  show 
such data manipulations in  log scales (bottom right), which  enhance the 
artifacts. Similarly, ( Y  - X), a derived variable that is  often used, when  
plotted versus X (top right) shows a "relationship." The degree of spuri- 
ous correlation increases as the variation of the common term (X i n  our 
examples) increases, relative to variation in  Y. Correlations of derived 
variables wi th  common terms are best avoided; if it is essential to use 
such variables, Atchley et al. (1976) and Kenney (1982) suggest proce- 
dures to see if spurious relationships are a problem. 

Error Propagation Techniques 

It is often necessary to make comparisons among derived variables, but  
we are likely to have estimates of variation only for the original variables. 
To estimate variation that is  associated with the derived variables, there 
are two approaches available: errorpropagation techniques, and the newer 
resampling methods. 

To calculate the error of a derived variable, we weight the contribu- 
tion of each component of the derived variable to variation of the derived 
variable. Note that this can apply to a simple ratio, to a difference, or to 
a complex equation (called a model i n  chapter 1) xvith different compo- 
nents. The essential assumption needed is  that the terms of the derived 
variable are independent, because if the terms are correlated, their con- 
tribution to variation of the derived variable is undefined. [Formulas to 
calculate propagated errors for different arithmetical operations are given 
in the accompanying box.) 

Formulas for Calculating Propagated Errors in Different Arithmetical 
Operations 

z = kx ) 5, = ks,  

These equations define how we might calculate propagated standard devia- 
tions (s,) in cases where the terms that contribute to the propagated stan- 
dard deviation are multiplied, clivicled, summed or subtracted, raised to 
powers, or subject to a constant mtiitiplier. In all cases, the z refers to the 
propagated ierm derived from the independent terms, x and y (modified from 
Meyer 1975). 



A newer way to assess the variation associated with a derived vari- 
able is to make use of resampling methods. One such procedure makes 
use of what is called the bootstrap technique (Diaconis and Efron 1983, 
Manly 1991). This method assumes that the frequency distribution of the 
population is closely approximated by the frequency distribution of a 
sample. Using this supposition, the sample frequency distribution of the 
variable (or for derived variables, the result of the operation being stud- 
ied) is itself repeatedly resampled n times, by randomly selecting sub- 
sets of the sampled values. Then the bootstrap mean is calculated from 
the repeated samplings. This procedure is repeated many times, until the 
mean of the derived variable does not change with further repetition. The 
measures of variation, such as the bootstrap standard deviation, can be 
calculated from the sets of subsamples. 
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