Statistical Analyses

Some studies produce unambiguous results, i n which case we do not need
statistics. In most cases, however, we need some objective way to evalu-
ate differencesin our results. To provide a way to evaluate results with
some degree of objectivity, we can use diverse statistical techniques, the
subject of this chapter.

As mentioned in Chapter 2, the core statistical notion (provided by
Sir Ronald A. Fisher) was that of seeing whether the effects of some vari-
able of interest arelikely to belarger than the effects of chancevariation.'
Statisticians have devised many procedures to do such comparisons and
to establish relationships among variables.

Most statistical textsstart, reasonably enough, by introducing thereader
to the simpler ways by which to see how well we know the mean of a
sample, and how surewe might bethat it differs from the mean of ahypo-
thetical population. Then they go on to tests that compare two sample
means, and so on. | did not follow that patternin thisbook, because thisis
not a book on statistics, but rather an introduction to principles (not to
techniques) of doing science. | would have preferred to go right away to
principles of design of scientific work, but that turned out to be difficult
without some previous discussion of statistical concepts. Therefore, in this
chapter | review afew statistical tests before going on to principles of ex-
perimental design in chapter 4, to provide readers with terms and strate-
gies of data analysis. Some readers might want to read chapter 4 first and
return to this chapter as needed. For the sake of reference, | doreview the
array from simpler to more complex testsin section 3.5.

Throughout, | refrain from entering into arithmetical details for each
test, because these can befound i n themany excellent statisticstextbooks.
Motulsky (1995) provides a lucid intuitive introduction to statistical
analyses. Sokal and Rohlf (1995) give a thorough and authoritative re-
view of the methods. Here we will emphasize concepts, but we will have
to do abit of algebrato sort out the concepts.

1. Chance or random variation is another way e refer to variation caused
by additive contributions from many and unidentified variables. Thisis the "l eft-
over" variation against which we want to compare the variation caused by the
treatment we are studying.
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[Wlhere measurement is
noisy, uncertain, and
difficult, it is only
natural that statistics
should flourish.
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This chapter therefore introduces the concepts underlying some se-
lected kinds of statistical analyses, emphasizing the strategy of thetests,
and what the tests are useful for. Out o the plethora o statistical meth-
ods available, | single out analysis of variance, regression, correlation,
and analysis o frequencies. These provide the wherewithal to analyze
data from most types of research discussed in chapter 1, are most fre-
quently used i n analyses that readers will encounter in the scientific lit-
erature, and provide the terms needed for chapter 4.

The chapter ends with a discussion of transformations of data. These
are useful tools to better understand the nature of our data, and are also
devices by which we can recast data so as to meet the assumptions of
several of the statistical tests.

3.1 Analysisdf Variance

Elements d anova

The analysis of variance [a phrase usually shortened to anova) was de-
veloped by the English statistical pioneer Sir Ronald A. Fisher. The anova
isfundamental to much of statistical analysisand to the design of experi-
ments. It is a general method by which we can compare differences (as
variances) among means and assess whether the differences are larger than
may be due to chance alone.

The anova is applied widely in scientific literature. A survey of uses
of anova, however, showed that they were applied deficiently in 78% of
the papers examined [Underwood 1981). The science community needs
more critical application, reporting, and interpretation of this most use-
ful statistical tool. Here we review only some basic principles.

Analysis of variance allows the separate calculation of estimates of
variance attributable to treatments (or other components], by assuming
that the various effectson avariable of interest are additive. The assump-
tion of additivity is a core idea underlying the anova, and leads to the
notion that any value of avariable can be decomposed into components

Y, =+ o+ &y

wherei=1,...,a,andj=1,...,n. A given measurement o Y;isthus
assumed to be made up of the sum of several terms. First, thereis an ef-
fect dueto being a Y, which isindicated as u, the grand mean of all the
values of Y. Then thereis aterm ¢; that describes the effect of belonging
to asubgroup o values o Y that wewill call the treatment, and for which
we ask the difference from the overall population. We answer that ques-
tion by means of athird term, the error,? g; This third component of Y
represents the random variations in the jth individual value of Y from
theith group. Theideaisthat therandom variation is the variability that
isleft after we have separated the effects of the grand mean and the groups
(ortreatments).For this g; term to be truly random, the observations within

2. Statistical jargon uses the term error to refer to random variation, not to
our more common use implying a blunder.
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groups must have been taken at random from among the population of
values. The mean of all the ¢; has to be equal to zero; some of the devia-
tions will be from values larger, and some smaller, than the mean of the
distribution. The estimated variance of g; is s2.

These assumptions are another way to say that the observations must
be independent of each other, and that the distribution o ¢; must be
normal. We al so assume that variances are homogeneous, that is, that since
s? calculated from different samples of observations estimates the same
population o2, the s? values must be similar. Asis the practice, Greek |l et-
ters are used to indicate that we are referring to parameters, rather than
statistical estimates.

The assumptions madefor anova, therefore, are additivity of components
of variation, independence of the observations, homogeneity of variances,
and normality of the observations. These assumptions are too oftenignored
in day-to-day analysis o scientific data. Too few of us actually carry out
preliminary analyses to see if indeed our data do meet the assumptions.
Although the various statistical procedures arefairly tolerant of violations
o the assumptions, understanding o the assumptionsisimportant because
they have repercussions, as we will see in chapter 4, in the design o re-
search as well asin the method of data analysis.

If our dataviolatethe assumptions, there aretwo alternatives. Thefirst
option may be to apply a different suite of statistical tests that make no
assumptions about distributions. Below we discuss nonparametric equiva-
lents of parametric methods that can be applied to data that do not meet
the assumptions of parametric tests. The second option is to transform
the data into new scales that do meet the assumptions, and then carry
out the appropriate anova on the transformed data. Several transforma-
tions are availableto solve different problems, as we also discuss bel ow.

Examples d Types d anova

Replicated One-way anova

To make more real the concept of anova, we examine first an exampl e of
one of the simplest versions: a one-way replicated anova. This layout is
applicable to test the effects of a variable or classification. Suppose we
are interested i n evaluating the firmness of sand along aseries of stations
on abeach. We use an instrument called a penetrometer to measure the
resistance to displacement by sand; the smaller the number, the smaller
theforce need to penetrate the sand. We take fiverandomly located mea-
surements at each of six stations along the beach (table 3.1).

Now, we could simply calcul ate standard errorsfor each of the means,
and judge whether the means are likely to differ by seeing if the values
for (mean + se) for the different means overlap. That is aqualitative judg-
ment; here wewant amore quantitative assessment of the hypothesis that
there are no differences among the means. We can see that there are dif-
ferences among the stations (thestatisticians want to have usrefer to our
stations as thegroups). Theissueiswhether the variation amonggroups
is larger than the within-group variation (thevariation among replicates
collected at each station, also called the error term).

Statistical Analyses
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Table 3.1. Measurementsd Force Needed for Sand Penetration (Relative
Units) Obtained from Five Replicationsat Each d Sx Beach Stations.

Station

Replication 1 2 3 4 5 6

T 21 31 30 47 52 38

2 52 42 27 38 44 40

3 29 37 30 41 52 25

4 20 51 42 32 35 31

5 30 44 46 41 48 39
Totds 152 205 175 199 231 137
Means 25.3 41 35 39.8 46. 2 27. 4

Data from example used by Krumbein (1955)

To make this comparison, we first ascertain that the data meet the
assumptions of anova. Itis easy to examine the datagraphically to check
on normality by means o afrequency histogram (fig. 3.1, left) and on
homogeneity of variancesby plotting variancesversus means (right).The
data are reasonably normal. The variances are similar, except for the one
for station 1, which is about three times as large as the others. To decide
whether the variances are homogeneous, we might try Bartlett’s test (Sokal
and Rohlf 1995, chap. 13) or thesimpler Hartley’s test. When we do these
tests, wefind that the variancesin this data set do not differ sufficiently
to invalidate the assumption. Variances have to differ more, as well as
increase with the mean, to be a problem.

The data therefore are reasonably normal, and the variances do not
change significantly i n relation to the magnitudes of the means. To check
for additivity we might cal culate deviations from the overall mean, and
see if the deviations are approximately similar for all groups. The other
assumptions are likely to be less of a potential problem. In this case, we
decide not to transform the data. Having checked the assumptions, we
proceed to calculate variances; table 3.2 shows one way to organize the
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Table 3.2. Andyssd Variance Procedure

Statistical Andyses

source of Sum of Degrees of Mean Square Estimate of
Variation Squares (55) Freedom (df) {MS) of Variance F Test
Among groups SS, = 2(C¥n)-cT k-1 MS,; = SS5,/k — 1) o? + cog? MS,/MS,,
Within groups SS,, = SS, - SS, kin—1) MS,, = SS./kin = 1) 2

Totals 2K)2—CT kn —|

55, and SS,, refer to sums of squares among and within groups. The value X; represents an observation. C, is the total for
each column in table 3.1; 3, indicates the process of summation across rows or down columns in table 3.1. The "correc-
tion term" CT is G%/kn, where G is the grand total. Degrees of freedom (df) are arrived at by the number of observations
we made (k = 6 stations, n = 5 replicates), minus 1. We then divide SS, and S§ by dfto get the mean squares (MS, and
MS,,). The mean squares, in turn, are our estimates of among-group and within-group variances. The value to be used in
the F test is obtained by dividing by the within-group estimate of variation, and separates out the variation due to among-
group variation. If F = 1, the variation among groups is the same as the variation within groups, and there is no group

effect.

procedure. [| have added tables such as this and others for those readers
desiring an explicit account.) Having done these cal cul ations, we can now
put together the anova table for the beach firmness data (table 3.3).

The anova allows usto test whether differences among groups are sig-
nificant relative to random variation estimated by the within-group terms.
These tests are carried out using the Fdistribution, so named 1n honor of
Fisher The ratios of the estimated variances of a treatment relative to
random variation are compared to Fvalues that < ary depending on the
degrees of freedom associated with the two estimates of variances being
tested.

So, the Fvalue we get in table 3 3 is 2.28. We look up the range of
values for the F distribution in tables provided in most statistics texts,
and find that, for 5 and 24 df, an Fvalue has to be larger than 2.62 to be
significant at the 5% probability level. The value in table 3.3 does not
exceed the 5% cutoff, and we report this finding by adding “NS” after
the Fvalue, for "not significant.”" Incidentally, the convention is that if
the F value is significant at the 5% or 12oprobability level (i.e., if the
calculated F is greater than 2.62 for &= 0.05 or the corresponding value
for = 0.01), theFvalueisfollowed by one or two asterisks, respectively.

In any case, by comparison with the table of F values, we conclude
that the null hypothesis cannot be rejected: firmness of sand over the
beach in question is homogeneous over the distances sampled. The mean
firmness of 37.8, calculated from all measurements, and the within-group
variance of 69.17 can be taken as estimates o the population mean and
variance.

Table 3.3. Andyssd VarianceTablefor Data o Table 3.1

Degrees of

Source of Variation SS Freedom (df) MS F
Among groups 788 5 157.60 2.28NsS
Within groups 1660 24 69. 17 .
Totals 2448 29 _

SS = sum of squares; MS = mean squares. NS = not significant.
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Analysis of variance might tell usthat thereare significant differences
among the groups or treatments, but if we were testing different kinds o
insect repellent or airplane wing design, we woulcl want to know whi ch
of the treatments differed. To do this sort of comparison, people have
applied t tests or other techniques for comparisons of means.

Differencesbetween two specific means are often tested with the ttest,
which is a special case of the more general anova. Application of the t
test to multiple means is problematic, although commonly done. If we
have five means, we have at least 10 possible t tests, if the means are
ordered by size. In this context, degrees of freedom tell us how many
comparisons are possible. With five means we have (n — 1) degrees of
freedom, or four comparisons possible (onedfistaken up when we esti-
mate the overall mean of the values). Thus, multiple t tests, if they are
doneat all, need to belimited to four comparisons, and the comparisons
have to be selected before we see the results. The problematic issue of
multiple testsis a general difficulty; as | have already mentioned.

In addition to the matter of using degrees of freedom that we do not
really have, multiple tests often run the risk of committing Type 1I er-
rors. As mentioned in chapter 2, whether we make 20 or 1060 compari-
sons among a set of means, at the 5% probability level by chance alone
we expect 5% (1 or 5 tests, respectively) to be declared significant, even
if the differenceis not truly significantly different. I ndiscriminate appli-
cation of multiple testsis not a desirable practice, because we are court-
ing Typell errors.

There are many kinds of multiple comparison tests developed to ex-
aminedifferencesamong sets of meansin rather specific situations. Stat-
isticians do not agree about the use of such tests. Some suggest cautious
use (Sokal and Rohlf 1995), but others think that “multiple comparison
methods have no place at all in the interpretation of data" (O’Neill and
Wetherill 1971). Mead (1988) recommends strongly that multiple com-
parison methods be avoided and that critical graphical scrutiny be done
instead.

At this point we have to note that there are two different types of anova.
In Model | anova the tseatments are fixed. Treatments could be fixed by
the researcher, as in testing the effects of different drugs on patients or of
different dosages of fertilizer on a crop. Treatments may also be classifica-
tions that are inherently fixed, such as age of subjects, color, or sex. For
exampl e, we could test whether weights of Italian, Chinese, and U.S.women
differ by collecting datain the three sites. Note that i n sorne Model | situ-
ations the researcher knows the mechanism behind the presumed effects,
but in other cases, such as the women's weight question, we deal with a
complex set of unidentified mechanisms that determine the variable.

In Model II anovas, treatments are not fixed by nature or by the ex-
perimenter, but are chosen randomly. Examples of this may be astudy of
concentration of mercury in 30 crabs that were collected i n each of three
sites, and the sites were chosen randomly. We do not know what might
be the meaning of differences among sites. The question this design al-
lows us to ask is whether among-group (sites) variation is larger than
within-group variation. If the Ftest is significant, the inference from a
Model II anova isthat there was a significant added variance component




associated with the treatment, while the inference from a Model | analy-
sisis that there was a significant treatment effect.

It is not always easy to differentiate between the two kinds of aAnovas.
For example, if the sites selected in the beach firmness study were cho-
sen at random from among many beaches, the study would be Model 1.
On the other hand, if we selected specific positions along the elevation
of the beach, to correspond to specific locations, or geological features
(beach face, berm, crest, etc.), the study would fit aModel | anova. The
identity of the model to be used matters because, as we saw above, the
inferencesdiffer somewhat, and the calculations for the twoe types of anova
differ to some extent (see Sokal and Rohlf 1995, chap. 8). In the end, the
differencesin conclusions reached viaaModel 1 or 11 analysis are a mat-
ter of nuances meaningful to the statistically versed. The larger benefit
of considering whether we apply aModel | or Model 1T analysisisthat it
fosterscritical thinking about how we do science.

Multiway anova

So far we have concentrated on anovas in which the data are classified
inoneway. One o the reasons why the anova has been an attractive way
to scrutinize datais that it is applicable to much more complicated data
sets. For exampl e, i n our examination of the weights of women from Italy,
China, and the United States, we might be concerned with the matter of
age, so we might want to do the analysis separating groups of femal es of
different ages. In this case, we have a data set with two-way classifica-
tion: country and age. We might further be interested in asking whether
women from urban or rural settings respond differently; in this case we
have a three-way anova. Such multiway classifications can be rather
powerful analytic tools, allowing usto inquire about important and subtle
issues such as the possible interactions among the treatment classifica-
tions. These studies permit asking of questions such as, "Do the age-
related differencesremain constant in rural settings, regardless of country
o residence?" Of course, the offsetting feature is that actually carrying
out such studies and doing their analysis becomes progressively more
demanding as the variables multiply. anova layouts are diverse, and can
be used to investigate many levels of several variables. Here we limit
discussion to two types that introduce the essential concepts.

Unreplicated Two-Way anvova. We can run an experiment in which we
have two treatments that are applied to experimental units (table 3.4).
For simplicity and generality, we can use Col unms and Rows asthe names
o the two treatments. If we have fixed groups (Model 1), we take it that
the observations are randomly distributed around a group mean (x); if
we have random groups (Model 11), the observations are randomly dis-
tributed around an overall mean for the groups (x). We can set out the
procedural concepts as in table 3.5, a slightly more complicated anova
table than table 3.2. If we are dealing with Model | ancva, we test the row
and column effects by dividing their mean squares {MS) by the error M S;
the divisions sort out the effects of both treatments (rowsand columns)
from random error. If we have aModel II anova, we have to calculate the

Statistical Andyses
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Table 3.4. Layoutd Unreplicated Two-way aNnova.

Columns
Rows 1 2 J c Row Totds
1 X3 3 Xi2 X1/ Xie R4
2 Xn X2z Xy Xae Ry
i Xiy Xiz2 Xy Xie R;
r Xa X2 X X R,
Column totas C, G G C. G

The X in the cells are the observations, and R C, and G are the row, column, and
grand totals.

components of variation from the last column in the table. For example,
for the row variance, theresidual MSis subtracted from therow MS, and
the difference is divided by the number of columns.

Replicated Two-Way anova. The unreplicated two-way layout is seldom
used in research, but itis atemplatefor many elaborations of experimen-
tal design. Depending on the questions we ask, and the material avail-
able, we can add replicates at each row-by-column cell, we can split cells,
we can run an experiment with only partial columns or rows, we can
make the groups be levels of afactor, or we can use one o the variables
to isolate uninteresting variation so that the effects of the treatment of
interest are better evaluated. Some o these strategies of treatment de-
sign are dealt with in chapter 4. Mead (1988) is an excellent reference
for all these designs.

Multiway replicated layouts are most useful to study the simulta-
neous effects of two or more independent variables on the dependent
variable. This joint influence isreferred to as the interaction o thein-
dependent variables and is a powerful concept made available only by
this type of analysis. The multilevel layout makes possible the investi-
gation of joint effects of variables, something that no amount of study
o the separate factors can reveal. We have to note, however, that with
an unreplicated design the joint effect of the two variables is not sepa-
rable from the random, residual variation. This separation becomes
possible only when we have replicates within cells affected by both

Table 3.5. Andyssd Variance Table for Layout d Table 3.4.

Source d Edimete

Vaiaion SS df MS of Vaidion FTet
Rows >U(R2/c) — CT* r—1 SSe/(r — 1) o2 + cog? MS/MS,
Columns 2UACA/N - CT c-1 SSc/le - 1) 2 + rog? MS/MS,
Residua variaion (oreror:  S5. — (SSg + 5S¢ r—-n -1 SS/r & 1)c - 1) ?

Total

SSX2) - CT rc—1

*CT = “correction term,” a shoe-hand way to refer to remainder variation.

rand care total number of rows, and total number of cells within a row, respectively. SS, and MS, are error sum of squares and error

mean square, respectively.

For other definitions of terms, refer to tables 3.2 and 3.4.




independent variables. Thisisthe major reason for replicated multiway
ANOVAS.

Suppose that instead of the Xj; observationsin cells of the unreplicated
two-way layout above, we set out n replicates, so we have X, observa-
tions. Sinceit is awkward in this situation to refer to rows and columns,
we discuss this design asinvolving two factors, A and B, both of which
are applied to or affect n replicates. The layout (table3.6)is called cross-
classified if each level of onefactor is present at each level of the second
factor. In this kind of analysis, it is advantageous if that equal replica-
tion be present in all cells; missing replicates or unbalanced designs re-
quire much additional computational effort.

The model for such an analysis, where there are two factors, A and B,
and cells hold n replicates, is

K=+ A;+ Bj+ ABy + &g
In thisequation, X representsthe kthreplicate (k=1,. .., n)in thetreat-
ment combination o theithlevel o factor A and the jth level of factor B.
A, and B; are the effects at the ith and jth levels of factors A and 6. We
will test the hypothesis that neither the A, B, nor AB effects are signifi-
cant by the testsimplicitin table 3.7.

The models of expected MS differ when A and B are random or fixed
(table 3.8). It is not always obvious which MS should be in the numera-
tor and which in the denominator of Ftests with multiway anova designs
of this level of complexity or greater. The distinction between random
and fixed models becomes more important with more complex layouts,
because, asin table 3.8, the model determines which MSwe divide by to
examine the significance o the effects of factor and interaction terms.
Mead (1988) gives rules by which we can select the appropriate MSs to
usein Ftests. Table 3.8isno doubt daunting; itisincluded here asasign-
post to warn the reader that at this level, the statistical analyses may be
powerful but increasingly complicated.

If you have gotten to this stage on your own, you will find it a good
idea to consult a statistician about these analyses before going on with
your work. Infact, experience teaches that it i swise to consult with some-
one with statistical expertise before starting research that demands ex-
perimental designs described in this section; otherwise, much time and
effort may be lost.

Table 3.6. Layout d a Replicated, Cross-Classified
Two-way ANGCVA.

VaigbeA
Vaidde B Subgroup 1 Subgroup 2
Subgroup 1 Xia1 Xi12 X211 Xa12
Subgroup 2 X121 Xi22 X221 X222

In this case, onlyt Wo replicate assertions are included. "Subgroups" could refer
to a classification (e g, males and females) or alevel (e.g., doses X and 3Xof
a given chemical treatment).

Statistical Anayses
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Table 3.7. Andyss d Variance Formulasfor Data d Table 3.6

Source of Variation Sum o Squares Degrees of Freedom

£(32 )
-/ K

Factor A @-1

bn
Factor B b-1
A X B (a—1b-1
Within cells ab(n -1}
Total abn -1

a b n 2
The “correction term™ in this case 1s K = (Z >3 X,,-,(] / abn.

Nonparametric Alternatives to aNnova

If transformations do not manage to recast data so that assumptions of
ANOVA a@re met, we can opt for nonparametric alternatives. These are pro-
cedures that are distribution-free, in contrast to anova, which makes as-
sumptions as to parametric distributions underlying the test. For single
samples, groups, or classifications, the Kruskal-Wallis test is available.
For tests comparing two samples, the Mann-Whitney U or the Wilcoxon
two-sample tests are recommended; both these nonparametric tests are
based on rankings of observations, and calculations of likelihood of de-
viations from chance. The Kolmogorov-Smirnov two-sample test assays
differences between two distributions.

Where we need nonparametric alternativesto parametric Model | two-
way aNova, the Friedman’s two-way test is appropriate. Where data are
paired, Wilcoxon’s signed ranks test is available. Both of these methods

Table 3.8. Estimatesd Mean Squares for Replicated Two-way anovas o Different Model Types

Layout in which

Mean Squares Estimate the Following

Within Cells A X B B A
Als B is abldf = (n - 1)] [df = (@~ 1)b -1)] [df = (b —1)] [df = (@8 1)
Fixed Fixed o2 Go2 + noug? c.2 + ankg? .2t bnk,2
Fixed Random o2 G2+ nosg? c.2 + anky? 0.2 + now? T bnk,?
Random  Fixed o2 G2+ nojg? 0.2 +m  + ankg? 6.2 + bnK,2
Random  Random c.2 .2t noyg? o2 + 1y + ank,? .2 + noag? + bnk,?

From Underwood (1981).

b
The "correction terms” in these cases are K§ = 2.(8; - 8)¥/(b — 1), Ki = T(A-AYa-1)




depend on analyses of ranked data. A much simpler testisthesign test, which
merely countsthenumber of positive and negative differencesamong pairs
of data and then ascertains whether the frequencies of + and — are i n equal
proportions.

3.2 Regression

Elements of Regression

In the anova we have inreality been considering the effects of a variety
of treatments on one dependent variable. That is, we had categories that
we called treatments, and we measured values of a dependent variable
inthe experimental units. Regression addresses the more general case of
measurements of two variables.

In regression, we express the relationship of one variable to another
by an equation that describes one as a function (linear in the simplest
case) of the other variable. Theregression canbe Y= ¢+ X and dY/dX
= 3, where Yis the dependentvari abl e, « is theintercept, X i stheinde-
pendent variable, and S, the slope of the line, is called the regression
coefficient.

Regression merely establishes the form of thefunction that links X and
Y. Regression cannot by itself establish a causal link between the two
variables. To ascertain whether changes in the independent variable X
lead to changesin the dependent variable Y, we need to apply manipu-
lative experimental approaches discussed above.

In any data set, we expect that the points liein a scatter around are-
gression line whose intercept is « and slope is 8. The line merely repre-
sents the position of the expected values, if three assumptions are met.
This model of regression requires the following:

Statistical Analyses
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"Regression"?

The paper is also notable because it contains

“Regression” sounds odd to ustoday, since in lay use
thisword hasafairly negativeconnotation. it was used
in a rather different way by Sir Francis Galton in a
paper published in 1885, to describe the relationship
between adult height5 of children and o their par-
ents. He first used the term “reversion” in alecture,
but he findly titled the paper "Regression towards
mediocrityin hereditary stature." Our reaction to his
use d words is a reflection d changes in usage; we
must not think hisintention wasto suggest adegrad-
ing descent to undesirable (but inherited) height,
which is what the title might mean to us today. In
any case, statisticians have retained the term to de-
scribe the relationship between variables.

one d the earliest bivariate plots (seefrontispiece
for thischapter). Curiously, the data, and Calton's
treatment o them, are more o a correlation than
aregression aswe might consider it today. The plot
asoincludes aderived variable version o the data,
because the data are reported as differences for
each observation from 68.25 inches (presumably
the average height). The numbers in the body d
Galton’s graph represent the number o individu-
adsin that particular “cell," so the format is a two-
dimensional frequency distribution, with lines
added to show the orientation o axes. This may
be an early effort, but shows sophisticated graphi-
ca representation.
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[1In Saly, thigh bones
and shoulder hones
have been found of 0
immense a size, that
from thence d necessity
by the certain ruesd
[regressiont, we
conclude that the men
to whom they belonged
were giants, as big as
huge steeples.
Miguel de Cervantes,
The Higory d
Don Quixote de
la Mancha

1. Theindependent variable Xis measured without error (againwe
are using "error" here in the statistical sense of an estimate of
variation, not in the sense of a mistake]. In this sense, the X val-
ues are fixed by the researcher (asin the case of Model | anova),
but the Y values are free to vary randomly.

2. The linear equation uy = o + BX describes the expected mean
value of Y for agiven X.

3. For agiven value X;, the corresponding values of Y are distrib-
uted independently and normally, so that Y; = « + B8X; + . The
error terms g; are assumed to be distributed normally with a mean
o zero. There may be more than one value of Y for given values
o X.

Uses of Regression

Definition of the Empirical Relationship of Y and X

The most common use of regression is to decide if indeed thereis asig-
nificant empirical relationship between dependent and independent
variables, and to define the relationship quantitatively. We may be in-
terested i n ascertaining whether, given the scatter of the data, fish yields
significantly increase as temperature increases, and if so, what are the
slope, intercept, and variation associated with therelationship. There-
gression establishes the empirical relationship, even if we have no
knowledge of exactly how temperature of seawater leads to larger fish
yields.

We can also useregression to quantify arelationship that has a causal
origin. If we experimentally manipulated the independent variable, we
can justifiably add the idea of causality to interpretation of the regres-
sion between X and Y. We have already discussed the idea of causal re-
lationships above; the regression merely allows us to define the quanti-
tative nature of the relationship.

Estimation of Y from X

If we have an equation that relates Y and X, an obvious use is to make
predictions about unknown values o Y from the equation and known
values of X. We might have data on seawater temperature and fish har-
vest from the same areas, and it might be of interest to calculatefish yield
for any given seawater temperature. This is readily done by use of the
linear regression equation fitted to the data.

Comparison of Regressions

Regression can also be used to ascertain whether the rel ationship between
Y and Xisthe same in bivariate samples taken from more than one popu-
lation. For example, we might be interested in testing whether the rela-
tionship o feldspar to quartz content in samples o igneous rocks taken
from the northeast of Brazil issimilar from that i n samples collected near
the Gulf of Guineain Africa
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Analysis of Covariance

An additional use of regression that merits mention isthat of analysis
of covariance (ancova). If we have data from several groups, say, nitro-
gen (N) content of leaves of different species of grasses, and we plot N
content of soil asthe X variate, and N content of leaves of grasses as the
Y variate, we might find that the N content in each species depends on e
the soil N content. We are also likely to find that although grasses as a
group respond in similar fashion (theslopes o the regressions are simi-
lar) to soil nitrogen, the regression lines are offset, that is to say, the in-
tercepts (the oin theregression equation) along the Y axis differ. ancova
isdesigned for just such cases; it examines the regressions of each grass
species, assuming that they are similar and so can be pooled, then uses
the pooled regression to "correct"” for the effect of the Xvariate (soil N in
our example) and applies Ftests to determine whether the intercepts on
the Y axis differ.

Analysis of covarianceis probably the most restrictive of the analyses
we have discussed. Use of ancova in tests of hypotheses requires meet-
ing all the assumptions of anova and of regression. and assumes that the
regressions used to eliminate the effect of the covariate are similar.

Significance Tests in Regression

Establishing the significance of regressions is done by means o tests of
significance much like the ones used in anova (table 3.9). If there is a
changein the Xvariable, X; — X, there will be aconcomitant changein Y
(fig.3.2).Part of the changein Y, ¥, — ¥, is dueto theregressionrelation-
ship.? The remainder, Y — ¥, can be thought of as theresidual variation
attributable to random effects of many unidentified variables or chance.

To do tests of significance in regressions, we therefore partition the
overall variation in the data set into a component that measures the ef-
fect of the regression (theeffect of variation of the independent variable)
onthe dependent variable. We also estimate the remaining variation (the i
departure in position of individual pointsaway from the regression line) ;
and treat that term as an estimate o the error due to random variation.

Table 3.9. Sources of Variation, Sum d Squares, and Mean Squares That Estimate the Modd in a
Regresson Andyss.

Source df SS M S M S Estimates

Explained by regression (differencesbetween 1 > v-2 5§ ok + B (X = X)2

estimated Y and mean o Y}
Unexplained variation (differencesbetween n -2 Siy-N2 Svx e
measured Y and estimated Y)

Tota (differences between measured ¥ and mean of v} n—1 Siy-v2 s2

3. Y isthe observed value of t he dependent variable; ¥ is the estimate of such
a value obtained using the regression relationship; X and Y are the mean esti-
mates of the independent and dependent variables, respectively.
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Fig. 3.2 Diagram to
illustrate the partition
o variationin the
dependent variable Y
into variation due to
the regression
relationship, and
variation due to
unexplained or
random variation. X,
Y show specific
values of variables, X,
Y show means of all
valuesof X and Y. ¥
shows estimate of
mean of Y.

Individual measurement of X Y
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Wethen compare thesignificance of the regression term by comparisons
using an Fratio, as in the case of anova.

Inthe case of table 3.9 the Ftest is the quotient of the regression and
residual MS. Theregression MS is based on one degree of freedom. The
total MS has (n— 1) df, so only (n— 2) are left for the residual MS.

The coefficient of determination (r2} is auseful additional statistic that
can be obtained from regression tables such as table 3.9. Values of r? are
obtained by estimates of the total changein Y created by the changein X,
carried out in the calculations of table 3.9. If we further divide s3 by sZ,
and multiply by 100, we estimate r?, whichisthe percentage of the varia-
tionin Y that is explained by variation in X. The r? is used rather fre-
quently and too freely (Prairie1996). We will discuss its properties, util-
ity, and drawbacks after correlations are introduced in the following
section.

Wehave dealt with M odel | regression, i n xvhich the Xs arefixed. M odel
11 regression applies to circumstances in which both variables are sub-
ject to error. Model Il regression is amore complicated subject, with sev-
eral different cases, whose properties are still not well understood, and
in which tests of significance are less straightforward than those of table
3.9. Model II regressions require somewhat different calculations and
tests. One way to do unbiased M odel 1I calculationsisto use the geomet-
ric mean approach (see Sokal and Rohlf 1995, chap. 14, which reviews
several different Model II cases and providesthe formulasneeded). Clear
discussions of applications of Model I regression i n marine biology and
fisheries sciences are provided by Laws and Archie (1981) and Ricker
(1973). When scatter around regression lines is relatively large, use of
Model | and Model 1I calculations yields different results, so with such
data it is more important to apply the most appropriate model. Distinc-




tion of the two modelsis less important in cases in which the scatter of
the data around the regression line is relatively modest, because there
the two models lead to similar results.

Of course, not all relationships arelinear, nor are we interested only
in two-variable relationships. For such applications (multipleand cur-
vilinear regression), consult Sokal and Rohlf (1995, chap. 16). These
topics are also treated well by Draper and Smith (1981), who provide a
clear account of methods, but demand understanding of matrix alge-
bra. Fortunately, the complicated cal culationsfor nonlinear regression
are done for us by most software packages, so we need not be deterred
from their use.

If transformationsfail to make datameet the requisite assumptionsfor
regression analyses, we can apply nonparametric methods. These tests
ascertain only whether the Y increases or decreases as X changes.
Kendall’s rank correlation is one option for a nonparametric alternative
to regression.

Regression Analyses W th Multiple Variables

In general, it seems reasonabl e to think that more than one independent
variable may affect values of a dependent variable. Often we can mea-
sure responses of a dependent variable to the influence of several inde-
pendent variables, and subject the data to examination by methods such
as multiple regression or the related pat h analyses, techniques that are
well described in Sokal and Rohlf (1995).These methods are not a pana-
cea. First, the analyses require all the assumptions of regression analy-
sis. Second, if there are correlations among the independent variables
whose effects are to be evaluated (aphenomenon called collinearity), it
is not feasible to unambiguously estimate the effects of each variable.
M ethods to test whether there are collinearities among variables thought
to be independent are given by Myers (1990).

The inappropriate use of multiple-variable analyses is common. For
example, Petraitis et al. (1996) found moderate to serious collinearity in
65% of examples of use of path analysisin evolutionary biology. More-
over, these analyses should not be interpreted as showing causality, but
co-relationships (seesection 3.3).Results coming from these sorts of analy-
ses are, in the terms of chapter 1, more characteristic of the initial de-
scriptive phase of scientific work, creating interesting observations whose
causes need study by manipulative methods.

3.3 Correlation

Correlation is a measure of the degree to which two variables vary to-
gether; this is noi the same as regression, which expresses one variable
as afunction of the other. Correlation and regression are related i n that
both treat relationships between two variables and in that the formulas
used in calculations are similar. It is therefore not surprising that they
are often confused. Table 3.10summarizes the applications of regression
and correlation.

Statistical Analyses
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Table 3.10. Situations Where Regression and Correlation Are Applicable.
Nature d the Two Vaiables

Purpose Y Random, X Fixed Y, Y, Bah Random
Describe relationship d one variable to another, Modd | regression Modd 11 regressiore
or predict one from the other
Egablish relationship between variables Meaningless,® but can user? as etimate Corrdation
d % d variaion in Y associated with coefficient r
varigion in X

Adapted from Sokal and Rohlf (1995)
aModel | is generally inappropriate, except in the common Berkson case, where values of X are subject to error, but the levels of X are
controlled by the experimenter. Since it isunlikely that the errors introduced by the experimenter and the random errors are correlated,

Model | applies.
bMeaningless because correlation is not definable if wefix one of the two variables.

If we wish to establish and estimate the dependence of Y on X, or
describe the relationship of Y and X, we can use Model | regression if Y
israndom and Xisfixed. If thetwo variables arerandom (letuscall them
now Y, and Y,, since they are random, and we have been using Y for
random variables), we can use M odel 11 regression, except in afew cases
listed by Sokal and Rohlf (1995, chap. 15). If both Y, and Y, are random
(and normally distributed), we can calculate the correlation coefficient,
r, and carry out significance tests.

If wewish to establish the association or interdependence between the
two variables, Y being random and X fixed, we can stretch the interpre-
tation of r by calculating r? as an estimate of the proportion of the varia-
tionin Y that is explained by variation in X. This r? has been defined in
section 3.2, where we called it the coefficient of determination. Itis pos-
sibleto calculate r even if we have data best suited to aregression analy- =
sis. Inthese casesther calculated can be taken only asanumerical value,
not as an estimate of the parametric correlation between the two variables.

Correlation coefficients and coefficients of determination are among
the most frequently used statistical tools. When we use these statistics,
however, we must be aware of certain pitfalls, as noted by Berthouex and
Brown (1994) and many others.

First, as discussed i n chapter 1, correlations cannot be taken to mean
that changesin X cause changesin Y. As another example, consider fig-
ure 3.3, where the datayield an r = 0.864, which can be shown to be
significant. Yet the values plotted on the x axis of figure 3.3 are the first
six digits of =z, versus the first six nonzero Fibonacci numbers onthe y
axis." Thereisnoreason to think that thereisany link — causal or other-
wise— between these numbers, and in fact the relationship is not even
predictive— thelinefitted to the data does not predict the next Fibonacci
number (13).

4. Fibonacci numbers are the sequence of numbers formed by adding thet wo
prior numbers (0, 1, 1,2, 3,5,8, 13, 21, ...), named after the mathematician

Leonardo Fibonacci (c. 1170) of Pisa.
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10+

y=0.79x + 0.31, 12 = 0.746, r = 0.864"

Fig. 3.3 Another
example d why care
is needed in interpre-
tation of correlations:
values of X arethe
first six digits o =
(314159);values o Y
are the first six
nonzero Fibonacci
numbers (112358).
Modified from
Berthouex and Brown
(1994).

Second, datawith quite different features might yield the samer. Fig-
ure 9. 4 shows that remarkably different data sets can yield anr of 0.82.
This example reminds us that it is always desirable to plot data graphi-
cally before proceeding to statistical analyses.

Third, thelikelihood of finding significant r or r? increases as the num-
ber of observations increases, even if thereis no relationship between Y,
and Y,. I-lahn (1973) cal culated values o r2 between unrelated Xsand Ys
that would be required to find alevel of significance. With just three
observations, for instance, r? would have to be 0.9938 before it could be
declared significant at the 0.05 level. With 100 observations of Y, and
Y, asignificant relationship would be declared even with an r? of 0.04.
We should therefore be wary of correlations or regressions computed from
low numbers of observations, becausein such circumstancesitishard to
show that possibly important differences are significant. We should also
be wary of correlations or regressions clone with many, many observa-
tions, because in these cases it is too easy to show that minor, perhaps
uninteresting, differences are statistically significant (cf.fig. 10.2 bottom).
Regardless of the number of observations, the ability to predict Y from X
using aregression islimited by the scatter of the points. Regressions with
r? < 0.65 have low predictive power, and should be interpreted accord-
ingly (Prairie 1996).

Fourth, the estimates of r or > depend on the range of values (and
number of observations and their spacing) of the Y, variable. Thisisevi-
dentinfigure 3.4, where different r? values result from the use o differ-
ent subsets of the full data set shown at the top. Data sets in the top and
second panels provide afair assessment of the relationship between Y,
and Y,. The narrow rangeinY, in the third panel makesit impossible to
discern therelationship (notenonsignificant r).Although the fourth panel
yields agood assessment o the correlation, in the absence of further data
a skeptical reader would not be convinced that the linear relationship




66 Doing Science

Fig. 3.4 Correlation
statistics calculated
for adata set (top) and
for subsets o the
same data (below).
Modified from
Berthouex and Brown
(1994).
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exists. The spacing o the observations in the X variable and the range
thus need to be carefully planned in designing studies, as discussed in
more detail in section 4.2.

Correlation and its relationship to regression, its near cousin, and to
other statistics have always been confusing. For some definitions and
identifications o the different ways r has been understood, see Rodgers
and Nicewander (1988). To clarify some of theissues, table 3.10 summa-
rizes the purposes of regression and correlation, and conditions for the
application of these two related kinds of analysis.

The significance values of correlation coefficients are tested by t tests.
These significance tests ascertain whether the association between the
two variables is greater than expected by chance alone. Recall the dis-
cussion in section 1.1about interpretation of the mechanisms that give
rise to correlations.




Correlational statistics have proliferated i n many fields in which ex-
perimental approaches are not readily available. There are also many ways
to extend the correlations to more than two variables, including such
methods as principal components andfactor analysis. These are usually
quite demanding computationally and ambiguousininterpretation. Much
more accessible are nonparametric tests, including Kendall’s or Spear-
man'srank correlation, which measure the magnitude of correlation. The
breathtakingly simple Olmstead and Tukey's corner test (Sokal and Rohlf
1995, chap. 15) is useful, but discerns only the presence or absence of
correlation.

3.4 Analysis of Frequencies

So far we have addressed analyses of continuous measurement data. Re-
call, however, that there are other kinds of data that are not continuous.
Moreover, we can easily convert continuous datainto noncontinuous data
by binning, discussed above. Noncontinuous data are also often shown or
obtained as frequencies. These kinds of data require different methods of
analysis. Here we first discuss goodness-of-fit tests in one-sample and
multiple-sampl e situations, then go on to tests of independence.

Goodness-of-Ft Tests

If we collect a set of data that can be expressed as frequencies, we often
want to know whether the frequencies in our sample match those ex-
pected on the basis of atheory or some previous knowledge. Such situa-
tions are common; for example, i n genetics, expected frequencies of off-
spring can be calculated based on accepted rules, and compared to
measured frequencies. Most people who have had any trainingin science
at all have been exposed to the chi-square (x?) test that has been tradi-
tional for such purposes. Sokal and Rohlf (1995, chap. 17) suggest that
the y2 test be replaced by something called the G test, for theoretical rea-
sons, plus the G test involves easier computation. G statistics are distrib-
uted approximately as x? statistics. Gtests of goodness of fit to an expected
frequency can be readily done for a single data set, to be compared to an
expected frequency. G tests are also possible for frequency datathat are
tabulated in more than one way, for example, in the case where number
of young per nest isrecorded for n individual parent birds, or where the
question refers to the frequency of sex o the young in the nests being
studied.

The Kolmogorov-Smirnov test is another nonparametric procedure
useful for continuousfrequency data. Thistest is more powerful than the
G or x? tests, particularly when dealing with small sampl e sizes.

Tests of Independence

There are circumstances in which it is more interesting to ask whether
two variables or properties interact with each other, rather than to ascer-
tain the exact frequency of occurrence. We have already encountered the
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notion of interaction between variables in discussing multiway anova
analyses.

One example o a question that addresses interactions with frequency
data might be whether mothswith light or dark color gain differential pro-
tection from predators. An experiment to test the question would involve
exposing 100 moths of each color to predators in the field and recording
survivors after a certain interval of time. We then count the frequencies of
light and dark survivors, and of light and dark moths presumably eaten by
predatory birds. If the properties of color and survival do not interact, we
would expect that frequencies of the four classes should equal the product
of the proportion in each color that were exposed (0.5in this experiment),
multiplied by the proportion of moths eaten in the overall sample.

Such two-way (aswell as multiway) data sets are shown as contingency
tables. Data of such structure can be evaluated by application of G tests
of independence (Sokal and Rohlf 1995, chap. 17), which make use of
the proportions of marginal totals (the sums of rows and columns) to
calculate departure from expected frequencies. These tests are similar to
the »2 contingency tests also used for the same purposes. The G tests of
independence are applicable to data for which either the marginal totals
are not fixed or one property is fixed.

One advantage o the contingency x? or the Gtestsisthat the frequen-
cies are additive. This permits testing of any selected specific compari-
sons among cells, rows, or columns in a contingency table. We could
compare, for example, the significance of color only within survivorsin
our moth experiment. This flexibility provides a way to extract much
information from frequency data.

In some selected circumstances, which we will refer to as repeated
measures, there may be interest i n changesin aproperty measuredinthe
same individual or set of experimental units. The McNemar test and
Cochran's Q test are two nonparametric statistics available to assess the
degree of correlated proportions in such special circumstances.

3.5 Summary o Statistical Analyses

| have mentioned a number of statistical analyses in the preceding sec-
tions. Table 3.11 summarizes these analyses and links them to the differ-
ent types of data discussed in chapter 2. Table 3.11is by no means ex-
haustive; instead, it lists representative ways to scrutinize a variety of
data and situationsthat arise commonly i n doing science. Sokal and Rohlf
(1995) discuss other options.

Regarding statistical tests in general,

« usetests after you are well acquainted with the data (let the data
speak first);
. apply tests that are appropriate (test assumptions, note the type

of data and the nature o the question);
« subject test results to skeptical scrutiny (graphthe datafirst, know

what results of tests mean);
« avoid using tests that you do not understand, or whose assump-

tions you may not have tested; and

A e -mmmi-n-j
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Table 3.11 Type d Data, and Comparisons Provided by Various Statistical Analyses

Type of Data

Nature of Samples Measurement Ordinal Nominal
Type of Question or Groups (parametric) (nonparametric) (nonparametric)
One-sample goodness of fit Gor y? Kolmogorov— G or x?
to randomness Smirnov
Difference between two Independent Unpaired t test Mann-Whitney G or x?
sarnples or groups U test
Difference between two Related Paired t test Wilcoxon McNemar
sarnples or groups
Differences among more than Independent One-way anOva Kruskal-wWallis G or y?
two samples or groups one-way goodness of fit
Differences among more than Related Two-way ANOVA Friedman's Cochran's Q test
two samples or groups two-way
Relationship of a variable to Y random, X fixed Model I regression
another
Relationship of a variable to Y, and Y, random Model Il regression
another
Relationship of a variable to Y random, Model 1 multiple
others X, ... X, fixed regression
Covariation of two variables Y, and Y, random Correlation Kendall or Contingency G
Spearman rank or 2 test
correlation
Covariation among more Y,, ..., Y,random Multiple
than two variables correlation,
principal axes,
. factor analysis
* avoid the temptation to apply atest just because it isavailablein
your software programs.
Often, awell-drawn figure, with measures of variation and a clear vi-

sual message (see chapter 9), is a far better way to examine, show, and :
understand your datathan complex cal culations done by a software pack- e
age and presented in afancy though perhaps indiscernible graphic. i

3.6 Transformations of Data

In chapter 2, | mentioned that transformationswere convenient ways to » :
recast data so as to convert frequencies of datato normal distributions, a :
basic assumption of many statistical analyses. In this chapter | have in-
troduced further assumptions associated with anova and, most particu-
larly, with regression analyses.

| should add that despite the space | give to assumptions and transfor-
mations, these are issues that are readily resolved and are not usually a
problem. Fortunately, it is often the case that one transformation helps
solve more than one violation of assumptions o a particular test. | n ad-
dition, both anova and regression analyses arefairly tolerant of violations
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Frequentist vs. Bayesian Statistics

As we end the twentieth century, there are revi-
sionist scientists who prefer to replace the conven-
tional "frequentist” approach to data analyses with
a Bayesian approach. Frequentist refers to the ap-
proach based on how frequently one would expect
to obtain a given result if an experiment were re-
peated and analyzed many times. Bayesian statis-
tics derive fiiom a theorem formulated in a paper
published in 1763 by the Reverend Thomas Bayes,
an English amateur mathematician. Bayesian analy-
ses allow the user to start with what is already
known, or supposed, and to see how new infor-
mation changes that prior knowledge, hunches, or
beliefs.

Bayesians find the frequentist assumption of a
fixed expected mean value for given variables un-
acceptable; even if such fixed values existed, they
argue, such values would not readily defined by
random sampling, in view of the pervasive varia-
tion that characterizes nature. Frequentists are lim-
ited to making statistical claims about "significant
differences"” based on probability disti-ibutions,
variously expressed as "confidence intervals.”
Everyone admits that such intervals are ambiguous
in definition, interpretation, and use. For example,
we can consult a statistical table of r values, where
a irequentist might Find that, with 50 observations

(notan unusually large number of observations), a
relationship can be said to be statistically signifi-
cant atthe 0.05 level, even though the correlation
coefficient might "account" for only 7% of the
variation amongthe observations. While statistically
significant, would such a conclusion be scientifi-
cally significant?

Bayesians openly admit that science is subjec-
tive and argue that explicitly admitting the use of
prior insights — informed hunches —to search for
scientific explanations is amore rational approach,
rather than make statistical claims based on unat-
tainable objectivity. Frequentists respond that no
human endeavor is perfectand that their approach
provides a way to reduce possible biases; they fear
that use of prior probabilities allows biases to enter
the field of science and at worst intimates that sci-
ence is just another socially constructed belief. TO
many frequentists, this is an alarming concept, as
discussed more extensively in the last chapter of
this book.

In any event, the dispute is not just about sta-
tistical methods, but about ways of thinking about
science, and the arguments will no doubt continue
and will likely invigorate how we do science in
coming decades. More details on the issue appear
in Science {1999) 286:1460-1464, American Stat-
istician (1997) 51:241-274, and in Ecological Ap-
plications (1996) 6:1034-1123.

ofassumptions.Nonetheless, | devote space to these mattersbecause they
force scrutiny of data and heighten our awareness oftheir nature. These
are issues that we tendtorush throughin our anxiety to get the answer
to the question, "Are the differences significant or not?"

| end this chapter with a discussion of derived variables. These are
theresult of yet another common class of transformation, carried out to =
expressrelationships such asrates or percentages, or forremoving effects
of a second variable by an arithmetical operation.

Logarithmic Transformations

The logarithmic transformation is useful in a variety of ways. We have
already seenin chapter 2 how it ensures normality. In regressions (fig.
3.5, top three panels),log transformations linearize relationships.5 Alog

5. | should note here that use of linearized regression can give rise to serious
errors in estimates of slopes andintercepts (Motulsky 1095, Berthouex and Brown
1994). Software available for desktop computers allows painless calculation of
nonlinear relationships where needed.
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Transformations and Graphical Analysis of Data

The preparation of datafor statistical analysisisonly
one reason why we should be aware o datatrans-
formations. A second, and probably more general
and important reason is that our understanding of
the nature of data and data presentation is fur-
thered by knowing how transformations reveal dif-
ferent aspects of data.

Consider, for example, the two graphs in this
box. The different symbols may be disregarded for
present purposes. A quick glance at the top graph
might lead usto conclude that variability and cen-
tral tendency of concentrations of iron decrease as
chlorinity increases. Similarly, cursory examination
of the bottom graph might suggest that variability
in iron concentration decreases, but that, contrary
to what was concluded from the top graph, cen-
tral tendency remains about the same. In fact, both
graphs show exactly the same data; the only dif-
ference isthat the Y axisis in an arithmetical scale
in the top graph and as a logarithmic scale in the
bottom. There is no sleight of hand intended in
either case; it issimply that use of different scales
leads usto see different features of the data. In the
case of the arithmetic scale, the data display makes
usfocuson the higher values; the log scale expands
the lower value range and lets us see more of the
structure of the data there. Both representations
are"true"; it isjust that choice of scale changesthe
depiction in set ways.

This example makes clear that (&) routine ex-
amination of axisscales (and of units) should pre-

cedeinterpretation o any graph, and (b) transform-
ing data in different ways makes apparent differ-
ent aspects of the data. Both of these features are
eminently useful in practicing science.
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Different scales reveal different features of data:
scatter plot of concentrations of disscived iron and
chloride in waters of the Ebr o Delta Lagoons,
collected by my colleague, Francisco Comin. Data
are shown plotted in arithmetical (top) and
logarithmic (bottom)scales.

transformation also assures additivity even if components of variation
are multiplicative, for example, Y;;= 1t o; €5 Thelog transformation will
convert the equation to an additive form that meets the assumption of
additivity: log Y; = log u * log a; + log g;. Log transformations also are
useful where, asin thethird panel of figure 3.5, variances increase as
meansincrease; i n such instances, logarithmic transformations makethe
variance independent of the mean and improve homogeneity of thevari-
ances. Log transformations therefore sustain assumptions of normality,
linearity, additivity, and homogeneity, and makealinear regression analy-

sis possible.

Of course, we cantransformthe Y, the X, or both variables before re-
gression analysis [fig. 3.5, top three panels). The choice depends on the
nature of the data. Transformation of Y values (fig. 3.5, top) is appropri-
ate where percentage changes in Y vary linearly with changes in X.
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Fig. 3.5 Transformations in regression. For each data type, the arithmetical versionis on the
left and the transformed variables are on theright. Top three panels: Different forms of logarith-
mic transformation. Fourth panel: Square root transformation. Bot t ompanel : Reciprocal
transformation.




Logarithmic transformation of the Xvalues isreasonable where percent-
age changes in X are related to linear changes in Y (fig. 3.5, second
panel). Logarithmic transformationsof Y and Xare useful in datawhere
thereisamuch larger increasein oneof the variables relative to increases
in the other when data are plotted in arithmetical scales (fig. 3.5, third
panel).

Scientific dataare commonly analyzed after log transformations. This
comes from the expectation that variability of datawill be proportional
to the magnitude of the observations. We want to evaluate differences
among meansin away that expresses variation relative to magnitude of
the values. Since log transformations do exactly this, they are a natural
and convenient scale in which to examine scientific data. Mead (1988)
therefore suggests that rather than ask, "When should data be transformed
logarithmically?" we should ask, "When is it reasonable to analyze data
in other than alogged scale?"

Square Root Transformations

In chapter 2, 1 noted that square root'transformations make count data
appear normally distributed and assure independence of mean and vari-
ance. Square root transformations of Y values also add linearity, as well
ashomogenize variances (fig.3.5,fourth panel), hel ping meet the assump-
tions of regression. Note that the square root transformation has an effect
similar to, but less powerful than, that of log transformation.

Reciprocal Transformations

Reciprocal transformationsare of the form 1/Y (fig. 3.5, bottom). Thistrans-
formationis important to allow regression studies o datasuch asfound in
figure 3.5, bottomleft. Thereciprocal transformationlinearizesthe relation-
ship of Y to X in data sets that originally have a hyperbolic relationship.
One example o a hyperbolic relationship is a dilution series, commonly
used in microbiology, in which afluid containing microorganisms is seri-
ally diluted by the transfer of a unit volume from one dilution to the next.

Linearization of data may lead, however, to biased estimates of in-
tercepts, slopes, and r. In the reciprocal transformation, for example,
the values at the large x (small 1/x) end of the range will be squeezed
together, and values at the other end of the range will appear to vary
greatly. This distortion biases the position of the line of fit. This trans-
formation should therefore be used with caution. Refer to the review
by Berthouex and Brown (1994) for further details before using linear-
ization transformations.

Derived Variables

Types of Derived Variables

Scientists use aremarkable variety of variables that are created by arith-
metical transformations, such as division of two original variables. Such
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manipulationslead to definitions of rates, percentages, and ratios, all of
which are corefeatures of doing science. Another common data manipu-

lation is to remove the effect of a second variable (implicitly assuming

additivity of effects) by subtractingthe effect of the second variable from

that of afirst variable.

It is not widely appreciated, however, that such data manipulations
may giverise to artifacts that need to be kept clearly in mind to prevent
confusing artifacts and actual effects. First, consider the 1,000 random
values of Y (restricted to numbers between 1100 and 1220) and X (any
three-digit number) plotted i nfigure 3.6 (topleft):these arerandom num-
bers, so there is no correlation at all among values. If, on the other hand,
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Fig 3 6 Spurious correlations created by use of derived variables Data are series of random$
numbers fn(X), random numbers between 1100 and 1220 fin(Y) (Kenney 1982) Top left Val?
of Y plotted versus values of X Topright Same data, plotted as Y — X on y axis, versus X on
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we plot Y/ X versus X, amarked relationship appears (fig. 3.6, bottom | eft),
merely because of the presence of X in both axes. Quite often we show
such data manipulationsin log scales (bottom right),which enhance the
artifacts. Similarly, {Y — X), aderived variable that is often used, when
plotted versus X (top right) shows a " relationship." The degree of spuri-
ous correlation increases as the variation of the common term (Xin our
examples) increases, relative to variation in Y. Correlations of derived
variables with common terms are best avoided; if it is essential to use
such variables, Atchley et al. (1976) and Kenney (1982) suggest proce-
dures to seeif spurious relationships are a problem.

Error Propagation Techniques

It is often necessary to make comparisons among derived variables, but
wearelikely to have estimates of variation only for the original variables.
To estimate variation that is associated with the derived variables, there
aretwo approachesavailable: errorpropagati on techniques,and the newer
resampling methods.

To calculate the error of a derived variable, we weight the contribu-
tion of each component of the derived variable to variation of the derived
variable. Note that this can apply to asimpleratio, to a difference, or to
acomplex equation (called a model in chapter 1) with different compo-
nents. The essential assumption needed is that the terms of the derived
variable are independent, because if the terms are correlated, their con-
tribution to variation of the derived variable is undefined. [Formulasto
calculate propagated errorsfor different arithmetical operations aregiven
in the accompanying box.)

Formulasfor Calculating Propagated Errors in Different Arithmetical

Operations
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These equations define how we might calculate propagated standard devia-
tions (s,) in cases where the terms that contribute to the propagated stan-
dard deviation are multiplied, divicded, summed or subtracted, raised to
powers, or subject to a constant multiplier. In al cases, the z refers to the
propagated term derived from the independent terms, x and y (modifiedfrom
Meyer 1975).

Statistical Analyses

75




76

Doing Science

A newer way to assess the variation associated with a derived vari-
able is to make use of resampling methods. One such procedure makes
use of what is called the bootstrap technique (Diaconis and Efron 1983,
Manly 1991).This method assumes that the frequency distribution of the
population is closely approximated by the frequency distribution of a
sample. Using this supposition, the samplefrequency distribution of the
variable (or for derived variables, the result of the operation being stud-
ied) is itself repeatedly resampled n times, by randomly selecting sub-
sets of the sampled values. Then the bootstrap mean is calculated from
therepeated samplings. This procedureisrepeated many times, until the
mean of the derived variable does not change with further repetition. The
measures of variation, such as the bootstrap standard deviation, can be
calculated from the sets of subsamples.
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