
Elements  of Scientific Data 
a n d  Tests of Q u e s t i o n s  

Before we venture into how research might be done, we must discuss some 
elements of scientific studies, including what kinds of data we might find, 
what is meant by accuracy and precision of data, and how the nature of 
data might be revealed by means of frequency distributions. I also need 

L We have repeatedly referred above to variables without stopping to de- 
fine what they might be; in our context, variables refer to properties sub- 

! ject to change. That may be too general; perhaps we can narrow the idea 

I ___to-skuractnristics with respect to which measurements i n  a sample will 
I vary. - 
1 We collect data to ask, "What is the value of the variable?" Amount of 

i rain, number of leaves per tree, a person's height, class rank, wind veloc- 

resistance all are examples of variables. 

Nominal Data 

Nominal  data are those that cannot be assigned quantitative properties. 
Rather, these data can be thought of as classifications, categories, or at- 
tributes. Examples might include studies in which we record the num- 
ber of species of plants, hair color types, country of origin, or whether 
the subjects are alive or dead. 

Nominal data can be examined quantitatively by combining the ob- 
servations into frequencies. Data that are subject to such grouping are 
referred to as enumeration data. For example, i n  genetic studies, peas 



can be classified into wrinkled and smooth categories, and the number 
of each category found in samples of n plants can be ~umpared  to fre- 
quencieq expected from a given genetic cross pattern. The hequencies of 
these groups can be compared using methods discussed in  sectlon 3.4. 

Ranked Data 

Ranked (also called ordinal) data reflect a hierarchy in  a classification; 
they can be ordered or ranked. Examples might be the order of birth among 
nestlings, or social positioll of individual lions in  a pride. The ranking in  
this type of data does not imply that the difference between rank 1 and 2, 
for example, is the same as, or even proportional to, the difference be- 
tween 3 and 4. 

d m ,  

Measurement Data I 

-1 
Measurement data are the most common type of observation. These are 4 
chard~te~ized  by values that are expressible ~n numeric order, and the ;i 

'-2 
+,,Y..r -- -T, pairs of values are meaningful. The Celslus scale ("C)  f~ 

1s of this type. The vaiue " i n  "C" 1s five degrees highel Illan " 5  "C," and % 
the difference between 5 "C and 10 "C is .zq.:?l to the difference between -8 
20 OC and 25 OC. In this example there is the additionaj ieppljcation that, &4 
in fact, this is an arbitrary scale. We cannot say 5 "C is five times 11x0 tem- 
perature at 1 "C, because 0 " C ,  the freezing point of water, is only a con- 
venient reference point, not a real zero. Physical chemisls use the kelvin 
scale (K) instead of OC because K provides a true scale in  which intervals 
are multiplicative. For our purposes, the example illustrates that scales 
of measurement are irlvariably arbitrary, and we are free to use the  scale 

. -- -- -. - +----- most appropriate ~ O F  specific purposes, a topic that we will revisit below . . _ ,  wnari w e  &--A% ,-I-+? t &rrxations. -- 

Measurement data can he continuous or discontinuous. Continuous 
variables can assume any number of values between any two points. 
Examples of this type are length, area, volume, and temperature. In such 
data, we could ascertain values to a degree that depends only on the pre- 

.. . blea cision of the method of measurement wE*wI;- ?:. . ...;*-;--''.i Odiia'' 
.-- - - 1 . 1  - 

, . . .  , 

. - -  
~- .,,,u-6d-.sc>ef~ hr z ~ r i s t i c j  can a ~ & & '  only certain fixed values. 

luumber of fish in  a trawl tow, number of young in a nest, or number of 
teeth in a skull are examples uf discontinuous variables. None of these 
are reasonably expressed-at least in the original data-as "1.6," for ex- 
ample; the data record has to be stated in whole units. 

The distinction between continuous and discontinuous variables 
matters because we analyze or represent these two kinds of data in dif- 
ferent ways This distinction may not, hweve r ,  be as clear as we wish 
O f t ~ n  it happens that initially discontinuous data are subsequently ex- 
pressed as continuous data. For example, in fisheries work, each trawl 
haul cullects only discontinuous data (whole fish), but if we average the 
number of fish for 10 trawls, we get a number with meaningful decimals. 
On the other hand, some discontinuous variables are derived from con- 
tinuous data. For instance, Classes 1-5 for hurricanes (depending on an 
ascending comparison of wind velocity and other properties) and the 
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can be classified into wrinkled and smooth categories, and the number 
of each category found in samples of n planLs La11 be compared to fre- 
quencies expected from a given genetlc cross pattern. The frequencies of 
these groups can be compared using methods discussed In section 3.4 
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venient reference point, not a real zero. Physical chemists use the kelvin 
scale (K) instead of "C because K provides a true scale in which intervals 
are multiplicative For our purposes, the example illustrates that scales 
of measurement are invariably arbitrary, and we are free to use the scale 
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lvumber of fish in  a trawl tow, number of young in a nest, or number of 
teeth in a skull are examples of discontinuous variables. None of these 
are reasonably expressed-at least i n  the original data-as "1.6," for ex- 
ample; the data record has to be stated in  whole units. 

The distinction between continuous and discontinuous variables 
matters because we analyze or represent these two kinds of data in dif- 
ferent ways. This distinction may not, however, be as clear as we wish. 
Often it happens that initially discontinuous data are subsequently ex- 
pressed as continuous data. For example, in  fisheries work, each trawl 
haul collects only discontinuous data [whole fish), but i f  we average the 
number of fish for 10 trawls, we get a number with meaningful decimals. 
On the other hand, some discontinuous variables are derived from con- 
tinuoils data. For instance, Classes 1-5 for hurricanes (depending on an 
ascending comparison of wind velocity and other properties) and the 
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Consider one example in which cages hold animals for an experiment. 
We assign numbers 1, 2 ,  . . . , n to the cages merely as identification la- 
bels (a nominal value]. As it turns out, cages nearer the laboratory win- 
dow are exposed to different light and temperature regimes than those 
farther from the window. Suddenly we are in a position to transform the 
data types, because we can use the labels as a proxy measurement for the 
environmental gradient. 

Another example also shows that the type of data may actually be 
defined by the question we ask.z Suppose that for personal reasons, the 
person who puts numbers on a soccer team's uniforms assigns low num- 
bers to the first-year players. The dispenser of uniforms argues that these 
numbers are only nominal labels, devoid of quantitative meaning, and 
in  any case, they were assigned at random. The more experienced play- 
ers complain, saying that the numbers 1-11 do have a meaning, since 
traditionally these are worn by the starting team (a rank variable of sorts], 
and that the numbers traditionally refer to position in the field (1 is by 
custom a goalkeeper's number, e.g.1. The players conceive the numbers 
both as nominal and as ordinal labels. Moreover, the players argue that 
the assignment of numbers seems unlikely to be random. To test this, a 
statistician is consulted to settle the issue. The statistician proceeds to 
treat the uniform numbers as if they were measurements, and does a few 
calculations to test whether such assignment of low numbers to the first- 
year players is likely to be due to chance alone. Each of the different view- 
points is appropriately classifying the same data in different ways. Clas- 
sification of data types thus depends on purpose, rather than being an 
inherent property. 

.2.2 Accuracy a n d  Precision 

For data to be as good as possible, they have to be accurate and precise. 
These two terms are easy to confuse. To distinguish them, let us say that 
in making a measurement, we want data that are as close to the actual value 
as possible. This is our requirement for accuracy. We would also prefer 
that if we were to repeat our data collection procedure the repeated values 
would be as close to eacll other aspossible. This is our need for precision. 

Another way to describe these ideas is to say that a measurement has 
high accuracy if it contains relatively small systematic variation. It has 
high precision if it contains relatively small random variation. 

Precision will lead to accuracy unless there is a bias in the way we do 
a measurement. For example, a balance could be precise but miscali- 
brated. In that case, we would get weights that are repeatable (precise), 
but inaccurate. On the other hand, the balance could be imprecise in 
determining weights. In this case occasionally the balance would pro- 
vide weights that are accurate, but it will not do so reliably, for at the 
next measurement the weight will be different. Without precision we 
therefore cannot obtain accuracy. Precision has to do with the quality and 
resolution of the devices or methods with which we measure variables; 

2 .  Updated from Lord 11953). 
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accuracy, with how we calibrate the devices or methods once we have 
obtained precision. 

Most measurements we make are going to be approximations. We can 
indicate the degree of precision (not accuracy) of our measurement by the 
last digit of the values we report. The implied limit to the precision of our 
measurement is one digit beyond the last reported digit. If we record a tem- 
perature of 4.22 "C, we are suggesting that the value fell somewhere between 
4.215 OC and 4.225 "C. If we report that the roundednumber of fish per -awl 
was 36,000,3 we imply that the value fell between 35,500 and 36,500. In 
general, within any one set of measurements, the more nonzero digits, the 
more precision is implied. Realistic limits to reported precision must be set 
by the investigator; most researchers report too many digits as significant. 

Sokal and Rohlf (1995) suggest an easy rule for quickly deciding on 
the number of significant figures to be recorded: it is helpful to have be- 
tween 30 and 300 unit steps from the largest to the smallest measurements 
to be done. The number of significant digits initially planned can be too 
low or too high. An example of too few digits is a measurement of length 
of shells in  a series of specimens that range from 4 to 8 mm. Measure- 
ment to the nearest millimeter gives only four unit steps. It would be 
advisable to carry out the measurement with an instrument that provides 
an additional digit. With a range of length of 4.1-8.2, the new measure- 
ments would give 41 unit steps, a more than adequate series. An example 
of too many digits is to record height of plants that range from 26.6 to 
173.2 cm to the nearest 0.1 cm. The data would generate 1,466 unit steps, 
which is unnecessarily many. Measurement to the nearest centimeter 
would furnish 146 steps, an adequate number. 

There are different procedures to round off figures to report actual 
precision. I prefer to round upward if the last digit is greater than 5. A 
few numbers will end in  5 ;  to prevent upward or downward biases in 
rounding in long series of data, rounding of these numbers ending in 5 

should be up if the number located b,efoye the 5 is odd, and down if it is 
even. Current software programs may use other alternatives. 

2.3 F r e q u e n c y  Dis t r ibut ions  

Throughout scientific work we deal with multiple measurements; we can 
say little about a single datum. A convenient way to gather multiple 
measurements together is to create a frequency distribution. Frequency 
distributions present the data in a way that capsulizes much useful in- 
formation. This device groups data together into classes and provides a 
way for us to see how frequent (hence the name) each class is. 

For example, let's say the values shown on the top of figure 2.1 are 
data obtained d~xring a study. These values can be grouped into classes, 
usually referred to as bins, and then the number of items in each bin (3.3- 
3.4, 3.4-3.5, etc.) is plotted as in  the bottom left panel of figure 2.1. If the 
frequency plot is irregular and sav-toothed, as is the case in the figure, it 
is hard to see the emerging pattern of the frequency distribution. We can 

3.  Actually, it would be clearer to express the rounded number as 3.60 x l o 4  
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Fig. 2 .1  Construction 
of a frequency 
distribution. Top: 
Values for a variable. 
Bottom left: A first 
attempt at a histo- 
gram. Ticks denote 
the label of every 
nther bin. Bottom 
right: Same data 
treatment, with larger 
bins (3.3-3.5, 3.6-3.8, 

etc.1. 

Original Measurements 
3.5 3.8 3.6 4.3 3.5 4.3 3.6 3.3 4.3 3.9 4.3 3.8 3.7 4.4 4.1 
4.4 3.9 4.4 3.8 4.7 3.6 3.7 4.1 4.4 4.5 3.6 3.8 3.8 4.2 3.9 

4 - - - - 
- 

I , , , , ,  

V a l i ~ e s  of measu remen t  

regroup the measurements into somewhat larger bins (3.3-3.5, 3.6-3.8, 
etc.), as in the bottom right panel. This somewhat largcr bin size better 
reveals the bimodal pattern of the data. Selection of a suitable bin size 
can convey not only the pattern of the data, but also a fair idea of the 
smallest significant interval for the variable on the x axis. 

Shape of the frequency distribution often depends on sample size. 
Compare the four frequency distributions of figure 2.2. When the num- 
ber of measurements is relatively low (n = 25; fig. 2.2, top) the distribu- 
tion appears relatively featureless. It is only as sample number increases 
that we can place more and more numbers in the same category along 
the x axis, and the underlying humped shape of the distribution becomes 
more and more apparent. In many studieswe have to deal with sample 
sizes of 25 or fewer. Discerning the pattern of tho distributions with such 
a relatively low number of observations may be difficult. 

Nominal as well as measurement data can be shown as frequencies. 
For example, for nominal data such as numbers of species of fish caught 
in trawl hauls, we could make a graph of the number of trawls (i.e., the 
frequency) in  which 0 ,  1, 2, . . . , n fish species were caught. 

The distribution of data of figure 2.2 is fairly symmetrical about its mean; 
this is not always the case. Many sets of data show considerable skewness. 
Data with the same number of observations and value of the mean may be 
quite differently distribiited; the upper two distributions in figure 2.3 are 
fairly symmetrical, but differ in that one is far more variable than the other. 
Tlle third distribution in figure 2.3 is skewed to the right. Tf we simply com- 
puted the mean, standard deviation (see section 2.4), and so on, for such 
skewed data, withoul plotting the frequency distribution, we would have 
missed some of its major features. Plotting frequency distributions is one 
of the first things that we ought to do as soon as data become available. 

In addition to revealing the central tendency, the scatter of the data 
around the mean, and whether or not the data are asymmetrical, a [re- 
quency distribution may show that there are multiple peaks. In the case 
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Birth Weight (oz) 

of figure 2.1, for example, we find two modes to the distribution. The 
bimodal pattern is clearer after we pool size classes along the horizontal 
axis to eliminate the jagged sam-tooth pattern created by finer subdivi- 
sion of the variable plotted along the x axis. The bimodality suggests that 
we might be dealing with two different populations. This is yet another 
reason why plotting of frequencies is a desirable practice. 

Before we learn how to check whether our data show that we have 
sampled more than one population, we need to acquaint ourselves with 
some statistics that describe the frequency distributions we have obtained. 

2.4 Descriptive Statistics 

Fig. 2.2 The shapes of 
frequency distribu- 
tions of samples 
depend on the number 
of observatiorls (n) 
included. Histograms 
shows measurements 
of weights of babies at 
birth. From Biometry, 
3rd ed., by Sokal and 
Rohlf G 1995 by W. H. 
Freeman and Com- 
pany. Used with 
permission. 

To describe frequency distributions such as those in figure 2.2,  we need 
to assess the central tendency of the distribution, as well as some indica- 
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Fig. 2.3 Frequency 
distributions with 
same mean (Y), but 
different shapes. 

tion of how spread out the left and right tails of the distribution may be. 
There are various ways to quantify central location and spread, eachuseful 
for different purposes. 

The mean  is what most people would call the average, and is the most 
common statistic that describes the tendency to a central location. The mean 
is intuitively attractive and is appropriate with distributions that are sym- 
metrical and bell-shaped. A disadvantage of the arithmetic mean is that it 
is markedly affected by extreme values. The geometric mean  (the antiloga- 
rithm of the mean of the logarithms of the measured values) may be useful 
with measurements whose hequency distributions are skewed (see below). 
The m o d e  is a quick way to judge the most frequent values in a data set, 
but is seldom used in analyses of scientific data. The median,  in contrast, 
is widely used in quantitative analyses, in particular when data fall into 
frequency distributions that are highly skewed. Most statistical analyses 
are designed to deal with means, but statistics designed for analysis of 
medians are increasing (Sokal and Rohlf 1995). It is inherent in the defini- 
tions of the various expressions of central tendency that geometric means 
are less affected by extreme values (outliers) than arithmetic means, while 
mode and median are unaffected by outliers. The arithmetic mean, me- 
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Definitions and Formulas for 
Some Basic Statistics 

Central location 
Arithmetic mean:' 

p = CY, / n 

Geometric mean: 

GM, - antilog l /n 1 log Y 

Mode: the mostfrequent category in afrequency 
distribution 
Median: value that is at 50% of n and so di- 
vides a distribution into equal portions in data 

1 .  Y are the i observations made; the symbol 1 
indicates that i values of Y are summed. 

that are ordered numerically-the (n+1)/2nd 
observation 

Spread 
Range: difference between the smallest and larg- 
est values in a sample 
Standard deviation: 

5 = -In--1j 
Coefficient of variation: 

Standard error of the mean: 

Standard error of the median: 

se, = (1.2533) X se, 

butions wi th  single modes. I n  the asymmetrical distribution shown i n  fig- 
ure 2.4, the mode  i s  farthest away from the long shoulder  or tail of the  dis- 
tribution, followed by the median,  and  the arithmetic mean  is  closest. The  
geometric mean  falls close t o  the  position of the  median. 

The  range  is  t h e  s implest  measure  of spread.  It usefully shows  the  
bracket of uppe r  a n d  lower values. It does not ,  however,  te l l  u s  m u c h  
about  the  relative distribution of values in our data. The  range i s  also 
affected by  outliers. 

The  s t anda rd  deviation i s  a more desirable measure of spread because 
i t  weights each  value in  a sample by  its distance from the  mean  of the  

Median & Geometric Mean = 0.9 

Amphipod length (mm) 

Fig. 2 .4  Three 
measures of central 
tendency in a skewed 
frequency distribu- 
tion; n is  the number 
of observations. 
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R u n n i n g  Means 

If we have a data set collected at intervals of, say, 
hours, days, centimeters, and so on, we might wish 
to see if there are trends across the various intervals. 
Often the variation from one measurement to the 
next is large enough that it is difficult to discern trends 
at larger or longer intervals. A simple way to make 
trends more evident is to use runn ing  means. Run- 
ning means (also called moving averages) are calcu- 
lated as a series of means from, say, sets of three ad- 
joining values of X ;  the calculation of the mean is 
repeated, but for each successive mean we move the 
set of three values one X value ahead. For example, 
the first of the runn ing  means is x, = (X, + X, + X,)/ 
3 ,  the second is x, = (X,  + X, + X4) /3 ,  and so on. 

The figure shows a data set, with trend lines 
calculated as running means of annual deposition 

of nitrogen in precipitation. Notice that year-to- 
year variation is smoothed out with 10 point mov- 
ing averages, and even more so with 20 poini 
moving averages. The latter reveal the longer scale 
(multidecadal) trends. This procedure gives equal 
weight to all the X used per mean; for some pur- 
poses it might be better to give more weight to 
the more recent X ,  for example, in  studies of 
contaminants that could decay through time in- 
tervals shorter than the moving average intervals. 
Berthouex and Brown (1 994) and Tukey (1 977) 
discuss this in  more detail. The need to smooth 
out, or "filter," variation at different time or 
spatial scales has prompted development of the 
field of statistics referred to as time series analy- 
sis. Chatfield (1 984) and Brillinger (1 981 ), among 
many others, provide an introduction to this 
field. 

0 0 

1 
00 oo 8 ,O 

e , 0°, 0" 

m 

Z 10 Point 

Example of use of running means [moving 
averages): open circles show data for annual 
amount of nitrogen falling in precipitation on 
Cape Cod, MA, US. The black lines show the 

I 3-,  lo-, and 20-point moving averages for the 
1920 1940 1960 1980 2000 data. Data from Jennifer L. Bowen. 

distribution. Let us consider how we might describe variation within a 
set of data. Suppose we have collected a set of data, and the values are 2, 

5 ,  11, 20, and 22. The mean of the set is 12. We cannot just calculate the 
average difference between each va!ue and the mean, because the sum of 
the differences is necessarily zero. We also need to give more importance 
to large variation (which may be the effect of a source of variation we 
might want to study) than to small deviations. The solution is to sum the 
squares of the differences between each observation and the mean. This 
simultaneously eliminates the sign of the deviations and emphasizes the 
larger deviations. For the data we have, the differences (or for statisti- 
cians, deviations) are -10, -7, -1, +8, and +lo.  After we square and sum 
the deviations, we have a value of 314, and dividing this total by the 
number of observations yields the mean of squared deviations, which for 
our data is 62.8. To get the values back into the same scale at which we 
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Alternative Calculation for Variance 

~ o s t  statistics texts written before the revolution 
in microcomputers and software show how to cal- 
culate the measure of variation in a different way. 

s = -2 - (CY)' /n/(n -1) 
In the era of mechanical calculators in which I 
learned how to do science, it was cumbersome to 
calculate s as given in the box of definitions. In- 
stead, we took the deviations of all measurements 
as if they extended from zero-this is another way 
to say we took the actual values-and then squared 
the values. The sum of squared deviations from 
zero for our data is 1034. If there had been no de- 
viations, the sum would have been (1 2 + 12 + 12 
+ 12 + 121, or using the sum of all values in our 
data, 3600/5, which is equal to 720. The difference 

between 1034 and 720 is equal to 31 4, and is an 
estimate of variation in the data set. Note that it is 
the same value as we obtained earlier. Therefore, 
in general, the mean of squared dwiations is 

sum of (data)2 - [(sum of dataI2 / 
number of data]. 

This expression is almost the same as what we USU- 
ally see as the computational formula for s2, the 
variance. The variance does weigh the relative 
magnitudes of deviations in data sets, and is the 
usual way we describe variation. To undo the ef- 
fect of squaring, we took the square root of the 
variance, which provided s, the standard deviation 
of individual observations within our group of data. 
With the advent of the computer age, we do not 
have to worry about computational difficulty, so we 
use the first version of the formula for s. 

did the measurements, we take the square root of the mean of squared 
deviations, and get the mean deviation. 

If you compare the expression for the variance &scussed so far with the 
version given in the box, you will note one discrepancy, which is worth a 
bit more explanation. In research we take samples as a way to obtain statistics 
(e.g., of X or s), which are estimates of the parameters (p or o) of a popula- 
tion from which the sample was drawn. In the case of the mean, a randon1 
sample provides a fair estimate of the population mean: if we have chosen 
our data by chance, the sample is equally likely to contain larger and smaller 
values, and the array is representative of the population; hence, we can ac- 
cept the sample mean as an unbiased estimate of the population mean. 

In the case of the variance, however, the sample provides a biased esti- 
mate of 0. The variation among the measurements taken refers, of course, to 
the set of measurements in our sample, so it necessarily is smaller than the 
variation among values in the population from which the sample was cho- 
sen. The estimated variation is therefore corrected for the underestimate of 
o. This is best done by expressing variation in terms of degrees of freedom 
(dfl.  Few of us really understand df, so we have to simply trust the math- 
enlaticians. For our present purpose, consider that if we know the mean of 
the values in a sample, and we know all but one of the values (n - I), we can 
compute the last value. So, if we calculate the mean in the process of calcu- 
lating s, we in a way "use up" one value, that is, a degree of freedom. It turns 
out that if we divide the sun1 of squared deviations by (n - 1) instead of n ,  
we correct for the bias in estimation of o from samples. Now we have ar- 
rived at the expression given in the box and in statistics textbooks. 

If we are dealing with data that follow a symmetrical, bell-shaped 
normal frequency distribution, a span of one standard deviation above 
plus one standard deviation below the mean captures about 68% of the 
values. A span of 2s  above and below the mean will include about 95% 
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of the values, while 3s comprises about 99% of the  value^.^ If we want to 
get an idea of the relative size of the variation represented by the stan- 
dard deviation, we can divide it by the mean and multiply by 100 to obtain 
the coefficient of vuriution. The coefficient of variation is especially useful 
for comparing variation of means that differ considerably in magnitude. 

We can sample apopulation more than once, and take multiple measure- 
ments on each occasion. We can then calculate the arithmetic mean for each 
sample. Those means themselves have a hequency distribution, usually with 
a smaller variability than that for the individual measurements. We can 
calculate the standard deviation of the means to quantify how variable they 
are. This new statistic is called the standard error of the mean, se,, an im- 
portant statistic that enables us to compare means. The se,is the measure of 
variation we want in most instances, since in practice we most often intend 
to compare means rather than individual observations. 

2.5 Distributions and Transformations of Data 

Use of the mean, standard deviation, or standard error presupposes that 
we are dealing with "normally" distributed data. "Normal" is a misno- 
mer we are stuck with, since, as discussed below, many data sets fail to 
follow the so-called norm. Normal distributions occur in situations where 
(1) many factors affect the values of the variables of interest; (2) the many 
factors are largely independent of each other, so the effects of the factors 
on the variable are additive; and (3) the factors make approximately equal 
contributions to the variation evidenced in the variable. 

It is a wise precaution to check the frequency distribution of data be- 
fore doing any calculations. For most purposes, it is enough to see arough 
bell shape to the distribution. Recall that for the number of observations 
we usually have, we should not expect a perfect bell-shaped distribution 
(fig. 2.2, bottom). Tests are available to ascertain whether we have a nor- 
mal distribution (see, e.g., Sokal and Rohlf 1995, chap. 6). One easy 
method is to plot the cumulative hequencies on a probability plot; in such 
plots, normal distributions appear as straight lines (fig. 2.5, top). Note that 
the obviously nonnormal distributions of figure 2.5 (middle left and bot- 
tom left) show small but systematic deviations from the straight lines 
(middle right and bottom right). 

Often we have to deal with data that are not normally distributed. If 
we wish to estimate the central tendency and variation in our data, our 
best option is to recast the data in s-uch a way that the transformed data 
become normally distributed (section 3.6). Some might feel uncomfort- 
able about such apparent sleight of hand. Recall, however, that all scales 
are arbitrary, and that the nature of data depends on the purpose of the 
researcher. We might be familiar with transformed scales without know- 
ing it; pH units are expressed on a log scale, for example. Here we are 
merely recasting values in ways that fit our purpose. Useful arithmetical 

4. These statements are shorthand for the idea that i f  we were to repeat the 
sampling many times, and we were to recalculate the standard deviation again, 
the values would have a 95 or 99% probability of falling within the range of val- 
ues of 2 or 3 standard deviations. 
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operations that lead to normality of transformed data are the logarithmic, Fig. 2.5 Graphical 
square root, and inverse sine transformations. check for normality of 

The logarithmic tralzsformatiolz is  the most common of all transfor- three different data 
mations. Log transformations are especially apt i n  the rather common case sets. 
of distributions that are strongly skewed to the right (fig. 2.6, top), that  
is, where there are more frequent observations at low values, or zero may 
be the most frequent observation. There i s  some disagreement among 
statisticians as to what to do  with values of zero; some prefer transforma- 
tions such as Y = log ( Y +  I), but  others suggest omitting zero values. We 
are therefore free to choose. 

Log transformations are possible with any of the types of logs. We use 
log,,, but logz can also be useful. Transformation to log2 allows us  to ex- 
press the frequency in  bins that  double at each interval. Doublings per 
interval is  an intuitively appealing way to display data of this sort.5 

5. This type of transformation has received much attention in the ecological 
literature and has acquired a glossary all its own. The distributions are described 
as log-normal. The bins have been called octaves, after a fancied parallel to mu- 
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Distributions Other Than Normal  

In the text, we  casually refer to  symmetrical, bell- 
shaped frequency distributions as the normal dis- 
tribution. The normal distribution is just one among 
many random frequency distributions that describe 
data collected under various conditions. Other 
distributions include the following: 

(Positive) Binomial. This is the distribution o f  
event5 that can occur, or not, in  samples of a defi- 
nite size taken from a very large population. Ex- 
ample: number of males in  families of a given size. 
The number of boys in  100 families of 3 children 
is 12, 36, 38, and 14, for 0, 1, 2, and 3 boys. The 
variance of a binomial is always less than the mean. 

Poisson. This is the distribution (named after an 
sighteentti-century mathematician) o f  large 
samples of events in which one of the alternatives 
is much more frequent than the other, and the fre- 
quency of occurrences is constant. The mean 
zquals the variance in  this distribution. Example: 
l umber  of flaws in parts for Mercedes Benz auto- 
nobiles, or number of Prussian soldiers kicked to  
jeath by horses. The chance of flaws or deaths is 
-are, and cases of flaws or deaths are more or less 
~nconnected to  one anothers' occurrence. 

Hypergeometric. This is the distribution of 
?vents sampled from a finite population without 

- 

replacement Example frequency ot  marked fish 
collected from a populat~on Into w h ~ c h  we released 
a gwen number of marked f~sh  

There are many sampling situations i n  which 
distributions o f  data are far f rom random. The 
commonest outcome of sampling surveys is to  f ind 
that  data depart f rom randomness, and are 
clumped. Clumped distributions have an excess 
o f  observations at a tail o f  the distribution (we 
have called these skewed distributions, e.g., fig. 
2.4). For such cases, different distributions can be 
used, as follows. 

Negative binomial. This is similar to  Poisson, but  
for the more common case in  which probability of 
occurrence is not  the same. For example, i f  the 
Prussian soldiers counted were to  include cavalry 
and infantry, the risk would differ systematically 
with different exposure to horses. In  this distribu- 
t ion the mean is always much smaller than the 
variance. The distribution was discovered by a 
certain de Montmort  about 1700, and the name 
comes from mathematical details of little interest 
to the rest of us. 

Logarithmic. This occurs in  skewed data distri- 
butions with some relatively large values on the right 
tail of the distribution. Log transformations convert 
these to  near-normal distributions (see section 3.6). 

Square root transformations t e n d  t o  conver t  data taken  as counts ( in -  
sects per  leaf, w o r m s  p e r  sample o f  soi l ,  nests p e r  tree, e.g.1 t o  n o r m a l  
d is t r ibu t ions  (fig. 2.6 ,  m i d d l e ) .  S u c h  data m a y  b e  Po isson  rather  than 
n o r m a l l y  d is t r ibuted,  s u c h  tha t  t h e  magn i tude  o f  t h e  m e a n  i s  re la ted  t o  
tha t  o f  the  variance. A square r o o t  t rans fo rmat ion  u s u a l l y  makes t h e  var i -  
ance independent  o f  t h e  mean.  I f  there are zeroes in the data, i t  i s  neces- 
sary t o  use  a s l i gh t l y  d i f fe ren t  t ransformat ion,  f o r  example,  dY + 0.5). 

Square roo t  transformations have effects s im i la r  to, but less p o w e r f u l  than, 
those o f  l o g  transformations. 

Inverse sine transformations are u s e f u l  t o  n o r m a l i z e  percentage o r  
p ropor t iona l  data (fig. 2.6 ,  bot tom).  T h i s  operat ion makes the  m e a n  i n -  
dependent  o f  the  variance for  percentage data, w h i c h  are character ist i -  
c a l l y  b i n o r n i a l  in nature. Inverse s ine t ransformat ions o f  percentages o r  
p ropor t ions  make  variances independent  o f  means. Percentages are also 

sical octaves, in which each octave corresponds to a doubling in the frequency of 
vibration of a note. Actually, musical octaves were derived from the eight notes 
of a musical scale. "Doublings" or, as Williams (1964) proposed, "doublets" might 
have been a more descriptive term 
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curtailed at the tails of the distributions, unlike normal distributions. The 
inverse sine transformation expands the range near 0 and 100, thus mak- 
ing the distribution nearer to normal. 

Box-Cox transformations are useful if we have no a priori reason to 
select any other transformation that provides the closest approximation 
to normality i n  the recast values. The calculation is best done on a com- 
puter. For a quick rule of thumb (Sokal and Rohlf 1995) try a series of 
transformations, 1/fl G, 1n Y, 1/Y, for samples skewed to the right, 
and the series of transformations Y2,  F, . . . , for samples skewed to the 
left. 

2.6 Tests of Hypotheses 

We can now return to the question of how to check whether our data 
belong to one population or to more than one. Suppose we are studying 
a variable (say, oxygen content of water), make many observations at two 
sites, and produce a frequency distribution. The frequency distribution 

Fig. 2.6 Nonnormal 
frequency distribu- 
tions, and transforma- 
tions (top, logarith- 
mic; middle, square 
root; bottom, inverse 
sine) to convert data 
to normal distribu- 
tions. 
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Let the Data Speak First 

Once we have a data set, it is a good idea to really 
try to understand the data before plunging them 
into statistical tests now temptingly easy to do using 
software packages. We can let the data speak to 
us by means of a few manipulations. 

A plot of frequency distributions (or box plots; 
see fig. 9.5) will let us perceive whether there is a 
central tendency in the data, i f  the data are skewed, 
what the left and right tails of the distributions are 
like, whether extreme values or outliers are present, 
or if there are apparent differences among data 
from difierent treatments or samples. If we have 
data collected across a gradient (such as time, 

- 

space, or dosage), a plot of the data versus the gra- 
dient will reveal trends or identify outliers that 
could be either errors or telling extremes. 

A plot of means versus variances can tell us 
whether variation changes with size of the mean. 
This is useful for several reasons, one being that this 
could tell us if the data meet assumptions of statis- 
tical tests to be applied. 

Fairly simple data manipulations early on will 
provide us with a clear sense of what our data are 
really like, as well as suggest how we might testthe 
data, and what further manipulations, such as trans- 
formations, nlight be needed for data analysis. 
Chapters 3 and 4 make evident why these initial 
data manipulations nlight be worthwhile. 

is shown diagrammatically in figure 2.7; the curves are continuous and 
rounded simply because we intend to show what would happen if we 
were to make many, many observations. The shape is in contrast to the 
step-shaped distributions characteristic of real samples, in which we 
inevitably have a limited number of observations. 

We are interested in ascertaining whether the values of oxygen con- 
tent of water at one site differ from those measured at the other site. How 
likely is it that the mean concentrations at the two sites are the same? 
The usual approach is to ask what is referred to as the n u l l  hypothesis, 
that is, the hypothesis that there is n o  effect, in  our case that the popula- 
tion means from the two sites are not different. 

Statistical tests allow us to calculate how likely it is that the question 
(or hypothesis) that we are testing is true. By convention, we usually test 
whether there are no differences between the data sets we are examin- 
ing. The tests can, of course, yield a continuous range of probabilities, 
from highly likely to rather unlikely that it is true that there are no dif- 
ferences between our data sets. How do we decide that something in  this 
continuum is meaningful? We need some clearer benchmarks, and hence 
researchers have decided, arbitrarily, on "significance" levels. These are 
usually given as 1 in 20 (probability, or P = 0.05), or 1 in 100 (P = 0.01) 
that the differences are larger than expected due to chance. These levels 
are spoken of as "significant" and "highly significant" and are often sym- 
bolized by adding " * "  or " ** "  following the value of the testing criterion 
calculated by the test used. 

Statisticians use the term "significant" in a way that should not be con- 
fused with our usual notion of the word. Results of research might be "sta- 
tistically significant" but not necessarily of profound consequence or in- 
teresting. For research purposes, "statistically significant" means only that 
the probability of a difference as large as we found by effects of chance 
factors alone is less than one of the predetermined thresholds (0.05 or 0.01). 

Earlier we made the point that tests of hypotheses are the hallmark of 
empirical science, but such tests are not as straightforward as they might 
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seem. Consider the null hypothesis, which we can refer to as Ha, which 
we wish to test (fig. 2.7). In its simplest form, the hypothesis can be true 
or false, and our test can accept it or reject it. If it is in fact true but our 
test rejects it, we make what we refer to as Type I error. If our test accepts 
the hypothesis but it is false, we make a Type 11 error. How do we deal 
with these two undesirable outcomes? 

By convention, we test whether the likelihood of the difference being 
significant is either 1 in 20 (the probability level, P or a = 0.05) or 1 in 
100 (a= 0.01). These values, as already noted, are called the significance 
levels of the tests: they are the probability that a result arose by chance 
alone. If we conclude that a result is significant at the probability level 
of 0.05, we are saying that either the result is as we claim, or a coinci- 
dence arose with odds of 1 in 20. That the possibility of coincidence is 
real is shown by a confession of a distinguished agricultural statistician, 
who once found a quite significant difference at a = 0.001, only to learn 
later that an assistant had forgotten to apply the treatments. 

If in a test of a hypothesis we commit a Type I error, we are giving up 
information that is true. To reduce the possibility of committing such an 
error, we can of course be more stringent in our test, that is, increase the 
level of significance at which we run the test. Unfortunately, there are 

Fig. 2.7 Test of 
hypotheses. H, and HI 
are null and alterna- 
tive hypotheses, 
respectively; P (black 
area) is the probability 
of committing a Type 
I1 error (accepting an 

untrue hypothesis). 
Power (p - 1) dimin- 
ishes as the means 
approach each other. 

- 
limits to this stringency. If we demand less uncertainty (i.e., move the 
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It ain't as much the 
things we don't know 
that gets us into trouble. 
It's the things we know 
ain't so. 

Arternus Ward 

vertical line to the right in  fig. 2.71, we increase the probability of com- 
mitting a Type 11 error (shown by the black area of fig. 2.7). That is likely 
to be a worse outcome, since then we would be accepting as true some- 
thing that is false. It is generally preferable to err on  the side of ignorance 
rather than to accept false knowledge. 

Because for most purposes Type 11 errors are more egregious than Type 
I errors,%tatisticians suggest that statistical tests be run at the 0.05 or 
0.01 levels of probability (the level of Type I error we are willing to com- 
mit), rather than at higher a levels. The level or probability of a Type I1 
error is denoted as P. Note in  figure 2.7 that ,B increases as two means 
come closer to each other. This says that the probability of committing a 
Type 11 error increases. The power of a statistical test is (1 - ,B1 and refers 
to the probability of rejecting the null hypothesis when it is false. Note 
how the power of the test diminishes i n  figure 2.7 as the two means ap- 
proach each other. 

Discussion of levels of significance brings u p  a common problem, that 
of multiple comparisons. In large studies it is often possible to test many 
comparisons. For example, in surveys of cancer rates, one might be 
tempted to compare incidence of cancers of the skin, ovary, liver, and so 
on, i n  many types of subpopulations (women under 40 vs. women over 
40 years of age, males who exercise dai1.y vs. those who exercise weekly 
vs. males who do not exercise, women who bathe in  freshwater lakes vs. 
those who swim only in the ocean vs. those who do both, etc.). Where 
we  run  such multiple comparisons, we will inevitably find that some of 
the comparisons turn out to be "statistically significant," even though the 
differences might be due to chance alone. The tests we use insuch  cases 
all have a level of probability, say, 1 out of 2 0 ;  this means that we expect 
that in 1 out the 20 tests we are performing we will, erroneously, find a 
"significant" difference. And we  will. 

Another problem with multiple tests is that i n  any given study there 
are only so many degrees of freedom. Each degree of freedom "entitles" 
the researcher to make one comparison. The number of comparisons done, 
however, should not exceed the number of degrees of freedom. If they 
do, this means that we are not really testing the differences at  the signifi- 
cance levels we  think we are, but  rather at lower levels of probability. 

Results that are not statistically significant do not prove that the data 
we  are comparing are similar. Scientific tests of the kind we are discuss- 
ing are not designed to prove that something is true, because there is a 
real possibility that we  might incur a Type I1 error by seeking to prove 
something. Thus, tests characteristic of empirical science differ from the 
unambiguous "proofs" possible within tautologies such as geometry and 
mathematics. 

6. Harvey Motulsky pointed out to me that generalities such as this might 
prevent us from being aware of the consequences of the two kinds of error. He 
suggests some cases where Type I errors are trivial and Type I1 errors bad [e.g., in 
screening compounds for new drugs, a Type I error means one just does one more 
test, but a Type I1 error might mean missing a new drug). In other cases Type I 
errors may be fatal and Type I1 errors trivial [releasing a new drug for a disease 
already treated well by an existing drug). Those are exceptional cases; what is 
important is to understand the two kinds of error. 


